УДК 550.42:577.4(571.1)

ХИМИЧЕСКИЙ СОСТАВ ВОД ОБСКОГО БОЛОТА (ЗАПАДНАЯ СИБИРЬ) И ЕГО ПРОСТРАНСТВЕННЫЕ ИЗМЕНЕНИЯ ПОД ВЛИЯНИЕМ СБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ

О.Г. Савичев, Н.В. Гусева, Е.А. Куприянов, А.А. Скороходова, К.В. Ахмед-Оглы

Томский политехнический университет E-mail: OSavichev@mail.ru

Проведен анализ химического состава вод Обского болота (Западная Сибирь). Получены данные о средних концентрациях главных ионов, микроэлементов, биогенных и органических веществ в естественных и загрязнённых болотных водах, подземных и речных водах в районе Обского болота. Установлены критерии загрязнения болотных вод. Выявлены три группы веществ с различным характером изменения концентраций по мере удаления от выпуска хозяйственно-бытовых сточных вод. Показано, что снижение минерализации, содержаний органических и биогенных веществ вплоть до фоновых значений происходит в полосе шириной до 600 м от границы болота.

Ключевые слова:

Болотные воды, химический состав, Обское болото, антропогенное влияние, Западная Сибирь.

Key words:

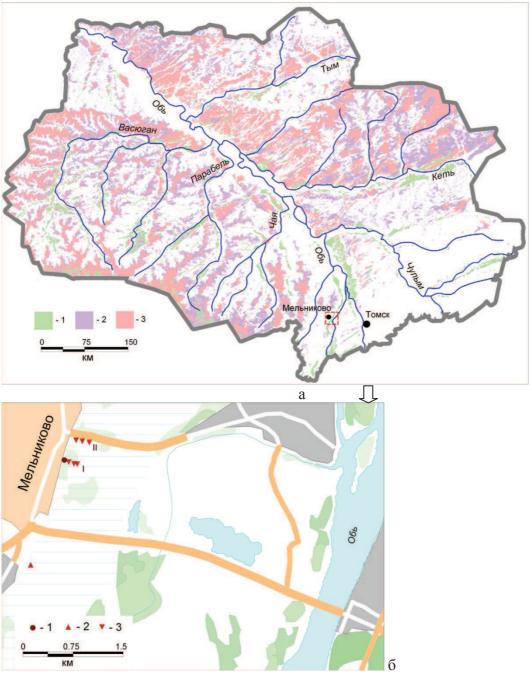
Bog waters, chemical composition, Obskoe bog, anthropogenous influence, Western Siberia.

Введение

Особенностью бассейна реки Оби на участке её среднего течения, примерно соответствующего подзонам южной и средней тайги, является значительная заболоченность, составляющая в пределах Томской области 37 % (рис. 1, а), а по центральной части южнотаёжной подзоны Западной Сибири – 47 % [1, 2]. Уже столь широкое распространение болот предопределяет актуальность их постоянного изучения, важность которого еще более возрастает при решении целого спектра фундаментальных и прикладных задач в области геохимии, гидрохимии, гидрологии, геоэкологии, геоботаники. В частности, понимание биогеохимической, гидрохимической и гидрологической роли болот является совершенно необходимым при прогнозе долгосрочных изменений окружающей среды в Западной Сибири и определении допустимого антропогенного воздействия на экосистемы, в том числе и болотные.

Особое значение при этом имеют исследования крупных болот, возникновение и эволюция которых, как правило, являются индикатором какихлибо существенных региональных изменений окружающей среды и климата. Наиболее известный подобный объект в таёжной зоне Западной Сибири — Васюганское болото площадью более 50 тыс. км² [3]. Но есть ещё одно крупное болото, внимание к которому пока незаслуженно незначительное.

Это — Обское (евтрофное) болото, протянувшееся в левобережной части долины реки Оби, от с. Кожевниково на юге до с. Иштан на севере, полосой шириной от 1,5 до 7 км и длиной 104 км. Торфяная залежь — низинного типа, со средней мощностью 3,2 м при максимуме до 6 м. Участок, расположенный южнее с. Мельниково (соответствует торфяному месторождению «Обское I»), характеризуется средними значениями: зольности торфа 28,7 %, степени разложения — 34 %; влажности —


83,7 %; рH — от 5,5 до 7,3. Средние значения северного участка (торфяное месторождение «Обское II») составляют: степень разложения торфа — 34 %; зольность — 28,7 % [4].

Объект и методика исследования

В данной статье представлены результаты первого этапа исследований, в рамках которого основное внимание было уделено изучению пространственно-временных изменений химического состава вод Обского болота на участке сброса сточных вод жилищно-коммунального хозяйства с. Мельниково (муниципальное унитарное предприятие МУП «Комхоз») — административного центра Шегарского района Томской области. На исследуемом участке распространён берёзовотростниковый тип биогеоценозов с полосами, занятыми преимущественно тростником. Его положение показано на рис. 1, а его место в поперечном профиле долины реки Оби — на рис. 2.

С целью выявления пространственно-временных изменений химического состава болотных вод и изучения факторов его формирования проводился: 1) отбор болотных вод, сточных вод жилищнокоммунального хозяйства и подземных вод эксплуатируемого водоносного горизонта в с. Мельниково (отложения палеогенового возраста) согласно [6, 7]; 2) определение химического состава болотных, сточных и подземных вод в стационарных аккредитованных лабораториях Томского политехнического университета (ТПУ) и ОАО «Томскгеомониторинг»; 3) обобщение и статистический анализ данных ТПУ и ОАО «Томскгеомониторинг» о химическом составе болотных, сточных, подземных и речных вод в соответствии с [8].

Отбор проб болотных вод выполнен из деятельного горизонта торфяной залежи (0,2...0,5 м от поверхности растительного покрова). Одновременно с отбором проб воды проводилось определение рН, Еh, удельной электропроводности и темпера-

Рис. 1. Схема размещения пунктов наблюдений за химическим составом вод Обского болота у с. Мельниково: а) типы болот: 1 – евтрофные; 2 – мезотрофные; 3 – олиготрофные; 6) пункты гидрохимических наблюдений: 1 – сточные воды МУП «Комхоз» с. Мельниково; 2 – фоновый участок; 3 – участок загрязнённого болота (I – створ выпуска сточных вод; II – створ вдоль дороги Мельниково – Старая Шегарка)

туры воды и атмосферного воздуха. Пункты отбора проб болотных вод расположены в границах трёх профилей (рис. 1): 1) профиль I, размещённый перпендикулярно границе суходола (с. Мельниково) и болота у выпуска сточных вод жилищно-коммунального хозяйства (ЖКХ) с. Мельниково; 2) профиль II, размещённый в 50 м выше дороги с. Мельниково — с. Старая Шегарка перпендикулярно границе суходола (с. Мельниково) и болота; 3) фоновый участок Обского болота 0,5 км вы-

ше дороги г. Томск — с. Мельниково, пункт пробоотбора в 2012 г., — в 90 м от границы болота и суходола (окраина с. Нашёково). Средний продольный уклон долины р. Обь составляет 0,085 ‰ (расчёт по средним уровням воды р. Обь у п. Победа и с. Никольское), уклон поверхности грунтовых и болотных вод по поперечному профилю долины — ориентировочно 0,49 ‰ (по разнице отметки поверхности границы болота и суходола и среднего уровня воды в р. Обь).

Рис. 2. Профиль долины р. Оби и Обского болота у с. Мельниково: Z — высотная отметка твёрдой поверхности [5]; В — оценочное положение минерального дна Обского болота (расчёт по средней толщине торфяной залежи); I — средний уровень воды в р. Оби у с. Победа [2]; II — средний уровень подземных вод в режимной скважине 63р (2аQ_{III} + ₱₃lt) в с. Мельниково [2]

При определении гидрохимических и геохимических показателей использовались следующие методы: удельная электропроводность χ — кондуктометрический; рН и Eh — потенциометрический; SO_4^{2-} , Cl^- — ионная хроматография; Ca^{2+} , HCO_3^- , бихроматная окисляемость (Б.О.), фульво- (ФК) и гуминовые (ГК) кислоты, перманганатная окисляемость (П.О.), растворённый углекислый газ — титриметрический; NH_4^+ , NO_2^- , NO_3^- , PO_4^{3-} , Si — фотометрический; Na^+ , K^+ , Al, Li — атомная абсорбция и атомно-эмиссионная спектрометрия; Zn, Pb, Cd, Cu — инверсионная вольтамперометрия и атомно-эмиссионная спектрометрия [9]. Анализ гидрохимических данных на наличие экстремальных значений проведён согласно [8].

Результаты исследования и их обсуждение

Наиболее подробное исследование химического состава вод Обского болота, его пространственной изменчивости в районе с. Мельниково выполнено в ноябре 2012 г., когда были отобраны пробы из деятельного горизонта Обского болота на незагрязнённом (фоновом) участке у с. Нащёково, в створе выпуска сточных вод ЖКХ с. Мельниково и вдоль дороги с. Мельниково – с. Старая Шегарка, а также точные воды ЖКХ с. Мельниково (табл. 1). Болотные воды фонового участка Обского болота в этот период характеризовались как пресные с повышенной минерализацией, гидрокарбонатные кальциевые, жёсткие, нейтральные, с окислительной обстановкой (по классификациям О.А. Алёкина [10], требованиям [11, 12]), сточные воды и болотные воды в зоне влияния выпуска сточных вод - как солоноватые, гидрокарбонатные натриевые, жёсткие, слабощелочные и нейтральные, с преимущественно восстановительной обстановкой (в створе II – с переходной или окислительной). Во всех случаях болотные и сточные воды содержат значительное количество органических и биогенных веществ, железа (табл. 1), что позволяет их отнести к поли- и гиперсапробным, гипертрофным.

По характеру изменения по мере удаления от выпуска и границы болота и суходола выделяются три основные группы веществ: 1) хорошо выраженное изменение в обоих створах (Б.О., П.О., БПК₅, нефтепродукты – уменьшение; Li, Ca²⁺, Mg²⁺ – увеличение); 2) однозначное изменение в одном из створов и скачкообразное – в другом (сумма главных ионов, Si, NH₄⁺, HCO₃⁻, Cl⁻, Na⁺, PO₄³⁻, Cu, ГК, ФК – уменьшение; Al – увеличение в створе выпуска сточных вод); 3) скачкообразное изменение в обоих створах (pH, Fe, CO₂, K⁺, SO₄²⁻, NO₂⁻, NO₃⁻, F⁻, Zn, Pb).

При этом необходимо отметить, что, во-первых, наиболее заметное уменьшение значений физикохимических и гидрохимических показателей в большинстве случаев отмечено в створе II, расположенном в 400 м ниже (по уклону долины р. Обь) выпуска хозяйственно-бытовых сточных вод (МУП «Комхоз»). Во-вторых, более или менее резкие колебания веществ из второй и третьей групп отмечаются на границе тростникового и берёзово-тростникового биогеоценозов или в пограничной полосе с преимущественно древесной растительностью. В-третьих, анализ регрессионных моделей изменения ряда гидрохимических показателей в створе II показал, что самоочищение загрязнённых болотных вод до фоновых значений, определённых на незагрязнённом участке Обского болота в это же время, ориентировочно достигается на расстоянии: нефтепродукты -220...250 м; БПК₅, PO_4^{3-} , $NH_4^+ - 300...320$ м; минерализация и бихроматная окисляемость — 550...600 м.

Обобщение данных, полученных в 2012 г., с материалами ранее выполненных исследований [2, 13, 14] показало, что воды низинного Обского болота по химическому составу и минерализации на незагрязнённых участках занимают промежуточное положение между подземными и речными водами (с учётом значительно более высокого уровня содержания органических веществ и продуктов их трансформации), а болотные воды на загрязнённых участках - между подземными, сточными и незагрязнёнными водами (табл. 2). Критерием явного загрязнения болотных вод могут считаться: сумма главных ионов $\Sigma_{rs} > 1000...1100~\text{мг/дм}^3$; $Na^{+}>170...180 \text{ M}\Gamma/\text{д}M^{3}$; $C1^{-}>120...140 \text{ M}\Gamma/\text{д}M^{3}$; $NH_4^+>5...7 \text{ MF/дM}^3$; $PO_4^3->0.5 \text{ MF/дM}^3$; $B\Pi K_5>5...8 \text{ MFO}_7/\text{дM}^3$; Б.О.>190...200 мгО/дм³; П.О.>40 мгО/дм³; нефтепродукты>0.2 мг/дм³; фенолы>0.03 мг/дм³.

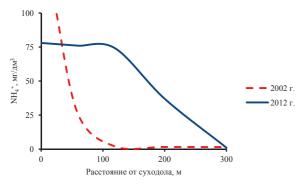

Сравнение данных о химическом составе болотных вод вдоль дороги Мельниково—Старая Шегарка 29.09.2002 г. [2, 13, 14] и 16.11.2012 г. позволило сделать вывод о существенной временной изменчивости как содержаний ряда веществ в стоках, так и характера их трансформации в болотных водах (рис. 3), что, возможно, связано с различным водным и термическим режимом Обского болота. В частности, летний период 2012 г. был значительно более засушливым и отличался пониженными уровнями болотных и речных вод в регионе. Тем не менее, эффективное самоочищение болотных вод в полосе шириной около 200 м от границы болота и

Таблица 1. Физико-химические и гидрохимические показатели вод Обского болота и хозяйственно-бытовых сточных вод, поступающих в Обское болото в с. Мельниково в ноябре 2012 г.

Показатель	Единицы измерения	Стоки ЖКХ с. Мельни- ково	Обс	Обское болото					
			створ выпуска стоков ЖКХ с. Мель- никово			р. Обь, м) вдоль дороги Мельниково-Старая Шегарка			с. Нащёково (фон)
			110	220	300	120	200	300	
рН	-	7,54	7,48	7,68	7,63	7,4	7,7	7,6	7,3
CO ₂	мг/дм³	17,6	20,24	26,4	22	52,8	35,2	22	30,8
$\Sigma_{\scriptscriptstyle \Gamma \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	мг/дм³	1418,9	1425,4	1461,7	1477,2	1486,2	1361,0	1103,0	580,5
Ca ²⁺	мг/дм³	80,0	76,0	102,0	104,0	90,0	106,0	123,0	108,0
Mg ²⁺	мг/дм³	26,8	26,8	25,6	24,4	26,1	29,9	32,3	21,2
Na ⁺	мг/дм³	218,0	237,0	218,0	216,0	244,8	219,6	152,6	11,1
K ⁺	мг/дм³	20,9	21,1	21,1	25,8	23,6	21,0	12,8	1,6
HCO₃⁻	мг/дм³	920,0	854,0	888,0	950,0	927,0	793,0	622,0	433,0
Cl-	мг/дм³	142,0	160,0	156,0	149,0	167,0	177,5	150,9	3,5
SO ₄ ²⁻	мг/дм³	11,2	50,5	51,0	8,0	7,7	14,0	9,3	2,1
NH ₄ ⁺	мг/дм³	78,00	62,40	46,80	63,18	74,00	37,00	1,05	0,10
NO ₂ -	мг/дм³	0,005	0,005	0,060	0,055	0,005	0,005	0,025	0,012
NO ₃ -	мг/дм³	0,41	0,40	0,26	0,29	0,31	0,20	3,67	0,19
PO ₄ ³⁻	мг/дм³	28,00	18,20	24,50	36,40	30,80	7,70	0,46	0,154
Si	мг/дм³	23,45	20,97	16,69	18,79	21,54	18,59	13,33	8,17
БПК5	мгО ₂ /дм³	8,35	8,38	8,13	7,66	7,99	7,84	0,84	1,08
Б.О.	мгО/дм³	204,0	104,1	101,6	82,7	102,9	68,8	56,6	13,8
П.О.	мгО/дм³	31,30	34,40	17,60	16,70	12,56	8,48	4,88	1,92
ГК	мг/дм³	6,99	9,37	0,34	0,02	2,19	0,54	0,17	0,34
ФК	мг/дм³	38,65	73,26	10,95	28,97	28,8	17,78	5,02	20,79
Нефтепродукты	мг/дм³	3,080	2,950	1,280	0,330	0,080	0,032	0,014	0,028
F-	мг/дм³	0,22	0,24	0,24	0,21	0,25	0,21	0,22	0,28
Al	мг/дм³	0,083	0,111	0,256	0,312	0,071	1,020	0,022	0,099
Fe _{общ}	мг/дм3	2,89	0,65	8,72	2,01	0,62	5,78	0,27	1,13
Li	МКГ/ДМ ³	6,0	6,0	6,5	8,0	0,5	4,5	6,2	4,0
Cu	МКГ/ДМ ³	3,4	3,1	1,4	1,1	0,6	2,0	1,0	1,0
Zn	МКГ/ДМ ³	30,0	45,0	7,5	7,3	2,1	12,0	2,0	2,3
Pb	мкг/дм³	0,92	0,98	0,22	0,38	0,22	2,30	0,10	0,39

Примечание: χ – удельная электропроводность; Γ_{Γ_N} – сумма главных ионов; Γ_N – бихроматная окисляемость; Γ_N – перманганатная окисляемость; Γ_N – биохимическое потребление кислорода за пять суток; Γ_N – гуминовые кислоты; Γ_N – фульвокислоты.

суходола отмечено и в 2002, и в 2012 г., причём в пределах первых 100...150 м возможно даже некоторое увеличение минерализации и концентраций некоторых веществ (по сравнению со сточными водами на момент обследования).

Рис. 3. Изменение концентраций NH_4^+ в болотных водах в створе II (вдоль дороги Мельниково—Старая Шегар-ка) 29.09.2002 г. и 16.11.2012 г.

Заключение

Установлены средние уровни содержания главных ионов, микроэлементов, органических и биогенных веществ в водах Обского болота на его естественных и загрязнённых участках (в районе выпуска хозяйственно-бытовых сточных вод административного центра Шегарского района Томской области — с. Мельниково). Наиболее типичными загрязняющими веществами, сбрасываемыми в Обское болото, являются растворённые соли, нефтепродукты, NH_4^+ , PO_4^{3-} , органические вещества по Б.О., П.О. и величине БПК $_5$.

В пределах загрязнённых участков: 1) выделены группы гидрохимических и физико-химических показателей с различными тенденциями пространственных изменений (или их отсутствием); 2) по мере удаления от выпуска сточных вод отмечено снижение минерализации, Б.О., П.О, БПК₅, концентраций соединений азота фосфора, нефтепродуктов, Si, металлов; различия в изменении гидро-

Таблица 2. Средние многолетние значения физико-химических и гидрохимических показателей болотных и речных вод у с. Мельниково, подземных вод в южном Приобье Томской области (с. Мельниково, Кожевниковский район)

		Обское болото		l, c. 0	беда	ды в е (па- онос- іт)	
Показатель	Ед. из- мерения	незагрязнён- ные участки	загрязнённые участки	Сточные воды, Мельниково	р. Обь – п. Победа	Подземные воды в южном Приобье (палеогеновый водонос-	
рН	ед. рН	7,24	7,41	7,71	7,97	7,31	
χ	мкС/см	170,3	1810,8	1977,0	205,6	-	
ГИ	мг/дм³	552,9	1198,5	1372,8	185,0	638,2	
Ca ²⁺	мг/дм³	94,0 118,3		106,8	32,8	89,9	
Mg ²⁺	мг/дм³	18,3	30,0	40,3	6,2	20,6	
Na ⁺	мг/дм³	18,0	107,3	72,7	6,7	44,7	
K ⁺	мг/дм³	2,6	10,5	7,0	1,1	1,9	
HCO₃⁻	мг/дм³	405,4	771,3	1056,7	121,4	450,2	
Cl ⁻	мг/дм³	8,3	140,4	125,7	3,3	18,8	
SO ₄ ²⁻	мг/дм³	1,6	20,8	20,4	13,5	6,2	
NH ₄ ⁺	мг/дм³	3,01	45,26	66,11	0,26	0,57	
NO ₂ -	мг/дм³	0,014	0,144	0,011	0,022	0,022	
NO ₃ -	мг/дм³	0,40	2,95	0,45	0,75	0,624	
PO ₄ ³⁻	мг/дм³	0,15	18,89	15,22	0,04	0,315	
Si	мгSi/дм³	8,17	18,32	23,45	2,56	19,39	
БПК5	мгО ₂ /дм³	1,08	76,74	125,45	2,82	-	
Б.О.	мгО/дм³	99,6	306,2	332,6	12,0	<4,0	
П.О.	мгО/дм³	25,93	15,77	31,30	3,85	2,17	
ГК	мг/дм³	0,34	2,11	6,99	0,68	-	
ФК	мг/дм³	20,79	27,46	38,65	3,74	_	
Нефтепро- дукты	мг/дм³	0,03	0,47	1,03	0,04	0,05	
Фенолы	мг/дм³	-	0,0175	0,0470	0,0009	0,0090	
СПАВ	мг/дм³	-	0,22	0,38	0,01	-	
F ⁻	мг/дм³	0,28	0,23	0,14	0,24	0,26	
Al	мг/дм³	0,099	0,299	0,083	0,056	-	
Fe _{общ}	мг/дм³	0,616	3,036	4,120	0,326	1,990	
Li	МКГ/ДМ ³	4,0	5,3	6,0	7,0	-	
Cu	мкг/дм³	1,0	1,5	3,4	7,0	7,7	
Zn	мкг/дм³	2,3	12,7	30,0	1,9	24,3	
Pb	мкг/дм³	0,4	0,7	0,9	0,4	0,8	
Количество проб	-	34	12	4	1522	69	

Примечание: СПАВ — синтетические поверхностно-активные вещества.

химических показателей по территории болота, выявленные в сентябре 2002 и ноябре 2012 гг., возможно, связаны с замедлением биохимических и гидрохимических процессов при отрицательной температуре атмосферного воздуха; 3) зафиксировано увеличение концентраций Ca²⁺, Mg²⁺, Al и изменение гидрохимического типа вод (с гидрокарбонатного натриевого на гидрокарбонатный кальциевый) по мере удаления от выпуска сточных вод.

В целом и загрязнённые, и незагрязнённые воды Обского болота характеризуются нарушением предельно допустимых значений (для объектов хозяйственно-питьевого и рыбохозяйственного назначения) по величине бихроматной и перманганатной окисляемости, содержанию Fe, NH_4^+ , PO_4^{3-} , нефтепродуктов. Самоочищение загрязнённых болотных вод до фоновых значений достигается на расстоянии от выпуска сточных вод: 400 м и более вниз по течению р. Обь (по продольному профилю) и от 220 до 600 м и более от границы болота и суходола по поперечному профилю долины р. Обь.

Работа выполнена при финансовой поддержке грантов РФФИ № 11-05-93112-НЦНИЛ_а и ГК № 11.519.11.6044 ГК № 11.519.11.6044), Госзадания « \overline{H} аука» № 5.4573.2011.

СПИСОК ЛИТЕРАТУРЫ

- Bazanov V.A., Berezin A.E, Savichev O.G., Skugarev A.A. The phytoindication method for mapping peatlands in the taiga zone of the West-Siberian Plain // International Journal of Environmental Studies. 2009. V. 66. № 4. P. 473–484.
- 2. Савичев О.Г. Водные ресурсы Томской области. Томск: Изд-во Томск. политехн. ун-та, 2010. 248 с.
- Львов Ю.А. Болотные ресурсы // в кн.: Природные ресурсы Томской области / под ред. И.М. Гаджиева и А.А. Земцова. – Новосибирск: Наука, 1991. – С. 67–75.
- Торфяные месторождения Томской области / под ред. Я.Н. Задуницкого, И.И. Казакова, В.Д. Маркова. – М.: Геолторфразведка, 1971. – 306 с.
- Льготин В.А., Савичев О.Г. Проблемы определения границ водоохранных зон водных объектов // Вода: химия и экология. – 2008. – № 9. – С. 3–6.
- Наставление гидрометеорологическим станциям и постам. Вып. 8. Гидрометеорологические наблюдения на болотах / под ред. С.М. Новикова. – Л.: Гидрометеоиздат, 1990. – 360 с.
- Вода. Общие требования к отбору проб. ГОСТ Р 51592—2000. Госстандарт России, 2000. — 31 с.
- РД 52.24.622—2001. Методические указания. Проведение расчетов фоновых концентраций химических веществ в воде водотоков. М.: Федер. служба России по гидрометеор. и монитор. окруж. среды, 2001. 68 с.
- 9. Зарубина Р.Ф., Копылова Ю.Г., Зарубин А.Г. Анализ и улучшение качества природных вод: в 2-х ч. Ч. 1. Анализ и оценка качества природных вод. Томск: Изд-во Томск. политехн. унта, 2007. 168 с.
- Алёкин О.А. Основы гидрохимии. Л.: Гидрометеоиздат, 1970. – 444 с.
- Показатели состояния и правила таксации рыбохозяйственных водных объектов. ГОСТ 17.1.2.04—77. М.: Изд-во стандартов, 1977. 17 с.
- Молчанова Я.П., Заика Е.А., Бабкина Э.И., Сурнин В.А. Гидрохимические показатели состояния окружающей среды / под ред. Т.В. Гусевой. – М.: Изд-во «ФОРУМ», 2007. – 192 с.
- Льготин В.А., Савичев О.Г. Оценка допустимых сбросов загрязняющих веществ в болота Томской области // Водоснабжение и санитарная техника. – 2007. – № 5. – С. 33–38.
- 14. Савичев О.Г. Химический состав болотных вод на территории Томской области (Западная Сибирь) и их взаимодействие с минеральными и органоминеральными соединениями // Известия Томского политехнического университета. 2009. Т. 314. № 1. С. 72–77.

Поступила 25.01.2013 г.