УДК 539.4

ИССЛЕДОВАНИЕ ТОНКОЙ СТРУКТУРЫ ЭЛЕМЕНТОВ КАБЕЛЯ ТЕХНИЧЕСКИХ СВЕРХПРОВОДНИКОВ НА ОСНОВЕ СПЛАВА Nb-Ti ПРИ МНОГОСТУПЕНЧАТОМ ВОЛОЧЕНИИ

С.А. Баранникова^{1,2,3}, Г.В. Шляхова^{1,4}, Л.Б. Зуев^{1,2}, Ю.А. Мальцев²

¹Институт физики прочности и материаловедения СО РАН, г. Томск ²Томский государственный университет ³Томский государственный архитектурно-строительный университет ⁴Северский технологический институт НИЯУ МИФИ E-mail: bsa@ispms.tsc.ru

Методами атомно-силовой, электронной и оптической микроскопии исследована эволюция структуры на промежуточной стадии волочения при переходе Ø1,3→Ø1,2 мм сверхпроводящего кабеля на основе сплава Nb+47 % Тi, который используют в магнитной системе Международного термоядерного экспериментального реактора. Целью работы является анализ влияния холодной деформации волочением на структуру многожильного сверхпроводника на основе сплава Nb-Ti. Исследованы микроструктура, фазовый состав и их влияние на свойства сверхпроводящего сплава Nb-Ti после холодного волочения и промежуточного отжига. Выявлены зоны локализации пластической деформации в местах обрывов сверхпроводника. Обнаружено изменение формы и химического состава волокон Nb-Ti в бездефектной области и в зоне разрыва кабеля. Выявлен диффузионный Nb барьер вокруг волокон Nb-Ti, размещенных в медной матрице. Установленные закономерности должны приниматься во внимание при разработке технологии холодной деформации волочением до получения сверхпроводниковых жил требуемых размеров.

Ключевые слова:

Сверхпроводники, дефекты, микроструктура, локализация пластической деформации, волочение. *Kev words:*

Superconductors, defects, microstructure, plastic deformation localization, cold drawing.

Среди различных сверхпроводящих материалов [1] сплав Nb-Ti, используемый для изготовления токонесущих элементов в магнитной системе Международного термоядерного экспериментального реактора (ИТЭР), занимает особое положение. Конструкция сверхпроводящего кабеля состоит из нескольких тысяч сверхпроводящих жил диаметром 2...5 мкм, фиксируемых медной матрицей [2]. К таким кабелям предъявляются высокие требования, наиболее важными из которых являются величина и стабильность критических параметров, стабильность токовых характеристик, безобрывность сверхпроводящих волокон (жил), их структурная однородность по длине провода и малые отклонения от геометрических размеров поперечного сечения [3-6]. При производстве проводников из сверхпроводящего сплава Nb-Ti наиболее ответственным этапом является холодное волочение, в ходе которого исходная композиционная заготовка деформируется от Ø60...70 до Ø0,1...1,0 мм. На этом этапе необходимо обеспечить безобрывность процесса и заданную плотность микродефектов в сверхпроводнике, контролирующих образование центров пиннинга (закрепления магнитных вихрей Абрикосова в сверхпроводниках II-го рода [1]). Настоящая работа направлена на анализ влияния холодной деформации волочением на структуру многожильного сверхпроводника на основе сплава Nb-Ti.

Деформационная структура и субструктура многожильного кабеля со сверхпроводящими жилами из сплава Nb-47,5 мас. % Ті (63,7 ат. % Ті) исследовалась на промежуточной стадии волочения при переходе $\emptyset 1,3 \rightarrow \emptyset 1,2$ мм. Для анализа

состава и структуры композитного многожильного провода использовалось несколько методик, обеспечивающих необходимое пространственное разрешение: оптическая микроскопия (Neophot-21 и Olympus GX 71), растровая электронная микроскопия (Philips SEM 515) и атомно-силовая микроскопия (Solver PH47-PRO).

Распределение элементов в зоне границы жилы из сплава Nb-Ti с медной матрицей определялось методом растровой электронной микроскопии на растровом ионно-электронном микроскопе Quanta 200 3D с использованием детекторов вторичных и обратно рассеянных электронов. Элементный состав сплава определялся энергодисперсионным рентгеновским микроанализом с использованием приставки EDAX на этом же микроскопе по зависимости числа характеристических рентгеновских фотонов определенной энергии, отвечающих Ті, Nb, Cu, от координат вдоль линии, проходящей через границу «волокно-матрица». Растровая электронная микроскопия на приборе Carl Zeiss EVO 50 с приставкой для рентгеновского дисперсионного микроанализа Oxford Instruments позволила с необходимой точностью определить такие структурные параметры, как размеры зерен и субзерен, их однородность по химическому и фазовому составу.

Комплекс разнообразных аналитических методик позволил получить новые сведения о структуре сверхпроводящего композитного провода и о распределении основных химических элементов в нем. Многожильный сверхпроводящий кабель на основе сплава Nb-Ti представляет собой трехслойную конструкцию, в которой между медными сер-

Рис. 1. Металлография поперечного (а) и продольного (б) сечения сверхпроводящего кабеля на основе сплава Nb-Ti на промежуточной стадии волочения при переходе Ø1,3→Ø1,2 мм: 1- медная оболочка, 2 – волокна Nb-Ti; 3 – медный сердечник

дечником и внешней оболочкой располагается промежуточный слой из волокон Nb-Ti (рис. 1), размещенных в медной матрице (композит). Такой композит может также содержать резистивные или диффузионные барьеры, стабилизирующие оболочки, и прочные армирующие элементы [2, 3].

Металлографические исследования поперечных сечений проводников показали, что в промежуточном слое на границе с медным сердечником проводника жилы Nb-Ti имеют округлую форму со средним диаметром ~10 мкм. В промежуточном слое на границе с медной оболочкой все Nb-Ti волокна приобретают ромбическую форму с диагоналями ~13 и 11 мкм соответственно вследствие деформации волочения.

Для более точного выявления рельефа поперечных сечений элементов кабеля использовали атомно-силовую микроскопию с применением контактного метода в режиме «постоянной силы» [7]. Существо метода заключается в том, что сигнал системы обратной связи, возникающий в процессе сканирования, устанавливается таким образом, что система способна отрабатывать относительно гладкие особенности рельефа достаточно быстро и в то же время быть достаточно медленной, чтобы отрабатывать крутые ступеньки поверхности. В результате слабо отображаются гладкие особенности рельефа волокна и с высоким контрастом отображаются высокоамплитудные максимумы диффузионного барьера. Такой способ отображения применяется для поиска небольших элементов структуры на большом участке относительно гладкой поверхности.

Вокруг волокон Nb-Ti, размещенных в медной матрице, обнаружен диффузионный Nb барьер, который отчетливо проявляется в виде выступов рельефа в зоне сопряжения жилы с матрицей (рис. 2, *a*). На профилограмме, построенной методом секущих, ниобиевый барьер обнаруживается по высокоамплитудным максимумам шириной до 250...260 нм,

разделенных низкоамплитудными линиями рельефа для волокон Nb-Ti и медной матрицы (рис. 2, б). На фоне гладкого рельефа волокон Nb-Ti и медной матрицы выявляется высокоамплитудный ниобиевый барьер (рис. 2, в).

В результате интенсивной пластической деформации медь в сердечнике приобретает субмикрокристаллическую структуру со средним размером зерен ~800 нм. В такой структуре чередуются одиночные зерна и их конгломераты, насчитывающие до 8 зерен. Сильнее всего медь в сердечнике продеформирована по границе «сердечник-промежуточный слой проводника», где максимальный размер зерна составил ~2120 нм, а минимальный ~310 нм. В промежуточном слое между волокнами в матрице медь представлена равноосными зернами со средним размером ~800 нм. В то же время средний размер зерен меди в оболочке проводника составил ~1050 нм [8].

Топография поперечного сечения в месте обрыва проводника показала, что в области, прилегающей к сердечнику, близлежащие волокна Nb-Ti имеют неправильную форму и образуют зону локализации деформации (рис. 3). В месте обрыва проводника в матрице промежуточного слоя между Nb-Ti волокнами средний размер зерна меди составил ~850 нм. Следует отметить, что по результатам статистической обработки, средний размер зерна меди в матрице ~800 нм сопоставим с размером зерна меди ~850 нм в месте обрыва проводника. Согласно двойному *t*-критерию для данной пары значений |t|=1,69, а коэффициент Стьюдента для доверительной вероятности $\alpha = 0,9$ составляет t_{af} =1,89, то есть $|t| < t_{af}$ и различие среднего размера зерна меди незначимо [9, 10].

Для исследования морфологии зоны локализации пластической деформации по глубине шлифа снимали дважды слой на шлифовальной бумаге по 500 мкм. В месте обрыва, вокруг волокон Nb-Ti, размещенных в медной матрице, обнаружен Nb барьер, который проявляется на профилограмме в виде высоких, тонких высокоамплитудных максимумов шириной до 250 нм (рис. 4). Такой же Nb барьер обнаруживается вокруг волокон Nb-Ti в месте обрыва после послойного шлифования на глубину 1000 мкм.

Рис. 2. Ниобиевый барьер вокруг Nb-Ti волокон в матрице проводника: а) 2D изображение; б) профилограмма участка 30×30 мкм; в) 3D изображение; 1– медная матрица, 2– волокна Nb-Ti; 3– ниобиевый барьер

R

Исследования, проведенные с помощью растрового электронного микроскопа Carl Zeiss EVO 50 с приставкой для рентгеновского дисперсионного микроанализа Oxford Instruments, показали, что внешняя оболочка и сердечник проводника состоят полностью из меди. В то же время часть элементов промежуточного слоя проникает в медный сердечник кабеля и на границу раздела «промежуточный слой-внешняя оболочка». В промежуточный слой-внешняя оболочка». В промежуточном слое на границе с сердечником все волокна Nb-Ti имеют округлую форму. Химический состав волокон одинаков и составляет 35,66 ат.% Nb и 63,07 ат. % Ti (таблица).

По результатам РЭМ-исследования можно построить карты распределения элементов, которое по яркости изображения качественно отображает распределение химических элементов в пределах выделенной области исследования. Такой анализ показал, что титан находится только в волокнах Nb-Ti, медь – между волокнами, а ниобий присутствует как в волокнах Nb-Ti, так и между ними в матрице.

В области разрыва жилы Nb-Ti утрачивают правильную форму (рис. 3), но их химический состав сохраняется на уровне 63,33 ат. % Ti и 35,57 ат. % Nb. Карты распределения элементов показали, что Ti и Nb находятся в волокнах; между волокнами в матрице распределены Cu и Nb.

Таблица. Данные микроэлементного анализа к рис. 2, а (ат. %)

Элемент	Ti	Cu	Nb
Спектр 1	63,54	0,78	35,67
Спектр 2	64,36	1,24	34,41
Спектр 3	63,63	1,23	35,14
Спектр 4	60,76	1,81	37,43
Среднее	63,07	1,26	35,66
Стандартное отклонение	1,59	0,42	1,29

Однородность химического состава волокон Nb-Ti в проводнике контролировалась сканирующей электронной микроскопией в режимах вторичных электронов и в характеристическом рентгеновском излучении основных элементов композита на приборе Quanta 200 3D. Определение элементного состава вдоль линии методом энергодисперсионного рентгеновского микроанализа показало наличие элементов Nb, Ti и Cu на отрезке, проходящем через границу «волокно-матрица».

Степень однородности распределения основных химических элементов в волокне и матрице проводника была исследована по зависимостям числа характеристических рентгеновских фотонов определенной энергии, отвечающих Ті, Nb, Cu, от положения места измерения. Неравномерное пространственное распределение числа характеристических рентгеновских фотонов Ті, Nb, Cu в волокне и матрице указывает на наличие диффузионного слоя на отрезке, проходящем через границу «волокно-матрица». Установлено, что в Nb-Ti волокне количество характеристических рентгеновских фотонов Ti, Nb максимально, а количество характеристических рентгеновских фотонов Cu мини-

Рис. 3. Зона локализации пластической деформации в промежуточном слое со стороны внутренней поверхности в виде дефекта в местах обрыва волокон NbTi проводника при разном увеличении: а) оптическая металлография; б) атомно-силовая микроскопия; 1– медная матрица, 2 – волокна NbTi; 3 – медный сердечник

Рис. 4. Ниобиевый барьер вокруг Nb-Ti волокон в месте обрыва после послойного шлифования на глубину 500 мкм: а) профилограмма участка 30×30 мкм; б) 3D изображение этого участка

мально. В медной матрице картина противоположна, т. е. максимальному количеству характеристических рентгеновских фотонов меди соответствует минимальное количество характеристических рентгеновских фотонов Ti, Nb. В промежуточном диффузионном слое сначала наблюдается постоянное число характеристических рентгеновских фотонов Nb, что подтверждает наличие Nb барьера, который обнаружен методом атомно-силовой микроскопии. Затем происходит уменьшение количества характеристических рентгеновских фотонов Ti, Nb на фоне увеличения количества характеристических фотонов Cu. В основе подходов, традиционно используемых при анализе ресурса пластичности технических сверхпроводников на основе сплава Nb-Ti [11], лежит представление о равномерности и однородности пластической деформации, о макромасштабной локализации непосредственно перед разрушением, что не соответствует современным представлениям. Экспериментальные данные о природе пластической деформации показывают, что присущая ей с самого начала деформирования неоднородность может приводить к раннему формированию одного или нескольких устойчивых очагов локализации пластического течения [12, 13] и в дальнейшем к обрыву жилы. Предпринятые в последнее время детальные исследования макролокализации деформации позволили установить однозначное соответствие между законом пластического течения на данном участке деформационной кривой и типом пространственно-временного распределения компонент тензора пластической дисторсии [14]. Эти факты должны приниматься во внимание при разработке технологии холодной деформации волочением до получения сверхпроводниковых жил требуемых размеров.

Выводы

При анализе влияния деформации волочением на структуру многожильного сверхпроводника на основе сплава Nb-Ti обнаружены следующие особенности:

- в месте обрыва проводника выявлены зоны локализации деформации, в которых близлежащие волокна Nb-Ti имеют неправильную форму при послойном шлифовании на глубину до 1000 мкм;
- обнаружено изменение размеров и формы волокон Nb-Ti в промежуточном слое в бездефектной области; на границе с медным сердечником волокна имеют округлую форму со средним ди-

СПИСОК ЛИТЕРАТУРЫ

- Гинзбург В.Л. Сверхпроводимость. М.: Альфа-М, 2006. 110 с.
- Шиков А.К., Панцырный В.И., Воробьева А.Е. и др. Меднониобиевые высокопрочные высокоэлектропроводные обмоточные провода для импульсных магнитов // Металловедение и термообработка. – 2002. – № 11. – С. 68–72.
- Шиков А.К., Никулин А.Д., Силаев А.Г. и др. Разработка сверхпроводников для магнитной системы ИТЭР в России // Цветная металлургия. – 2003. – № 1. – С. 36–43.
- Kozlenkova N., Vedernikov G., Shikov A. et al. Study on Ic(T,B) for the Nb-Ti strand intended for ITER PF insert coil // IEEE Transactions on Applied Superconductivity. - 2004. - V. 14. -№ 2. - P. 1028-1030.
- Lee P.J., Larbalestier D.C. Development of nanometer scale structures in composites of Nb-Ti and their effect on the superconducting critical current density // Acta Metallurgica. – 1987. – V. 35. – № 10. – P. 2523–2536.
- Черный О.В., Тихинский Г.Ф., Сторожилов Г.Е. и др. Ниобийтитановые сверхпроводники с высокой токонесущей способностью // Сверхпроводимость: Физика, химия, техника. – 1991. – Т. 4. – № 8. – С. 1617–1623.
- Миронов В.Л. Основы сканирующей зондовой микроскопии. Н. Новгород: ИФМ РАН, 2004. – 110 с.
- Зуев Л.Б., Баранникова С.А., Шляхова Г.В., Колосов С.В. Исследование структур на микро- и мезоуровнях в деформируе-

аметром ~10 мкм, на границе с медной оболочкой волокна имеют ромбическую форму с диагоналями ~13 и 11 мкм;

- в результате интенсивной пластической деформации медь в элементах кабеля приобретает субмикрокристаллическую структуру со средним размером: в сердечнике ~800 нм, в промежуточном слое между волокнами в матрице ~800 нм, в месте обрыва проводника в промежуточном слое между волокнами в матрице ~850 нм, в оболочке ~1050 нм;
- выявлен диффузионный Nb барьер вокруг волокон Nb-Ti, размещенных в медной матрице, шириной ~ 250 нм в бездефектной области и в зоне локализации пластической деформации при послойном шлифовании на глубину до 1000 мкм;
- наблюдалось изменение формы и химического состава волокон Nb-Ti в промежуточном слое: в бездефектной области все волокна Nb-Ti имеют округлую форму и состав 35,66 ат. % Nb и 63,07 ат. % Ti, в области обрыва проводника волокна имеют правильную форму и химический состав 35,57 ат. % Nb и 63,33 ат. % Ti.

Работа выполнена при финансовой поддержке гранта Российского фонда фундаментальных исследований по проекту 11-08-00237-а.

мых волочением технических сверхпроводниках на основе NbTi сплава // Фундаментальные проблемы современного материаловедения. - 2012. - Т. 9. - № 4. - С. 417-421.

- Зажигаев Л.С., Кишьян А.А., Романиков Ю.И. Методы планирования и обработки результатов физического эксперимента. – М.: Атомиздат, 1978. – 232 с.
- Митропольский А.К. Техника статистических вычислений. М.: Изд-во физико-математической литературы, 1961. – 480 с.
- Ажажа В.М., Черный О.В., Сторожилов Г.Е. и др. Изучение деформированного состояния при разнонаправленной обработке Nb-Ti-сплава // Вопр. атом. науки и техн. Сер. «Вакуум, чистые материалы, сверхпроводники». – 2004. – № 14. – С. 136–139.
- Zavodchikov S.Y., Zuev L.B., Belov V.I. et al. Plastic deformation and fracture during the Zr-1 % Nb tube production // Zirconium in the Nuclear Industry: Proc. XIII Int. Symposium. – West Conshohocken, PA: ASTM, 2002. – P. 427–447.
- Zuev L.B., Zavodchikov S.Y., Poletika T.M. et al. Phase composition, structure and plastic deformation localization in Zr-1 % Nb alloy // Zirconium in the Nuclear Industry: Proc. XIV Int. Symposium. West Conshohocken, PA: ASTM, 2006. P. 264–274.
- Зуев Л.Б., Данилов В.И., Баранникова С.А. Физика макролокализации пластического течения. – Новосибирск: Наука, 2008. – 327 с.

Поступила 03.05.2013 г.