тт указатын рекомендации								
	Доля ароматических углеводородов в сырье реактора дегидрирования, % мас.	Фактические параметры		Оптимальные параметры				
Дата		Расход серы	Доля АБСК, %мас.	Расход серы	Доля АБСК, % мас.			
01.01.2014	0,57	323,97	96,93	315,12	97,42			
25.06.2015	0,84	320,00	95,99	304,95	97,17			
27.09.2014	0,45	317,21	97,7	309,5	98,23			

Таблица 1. Эффект от поддержания оптимального соотношения SO₃/ЛАБ, который достигается при соблюдении указанных рекомендаций

по поддержанию оптимальных параметров процесса сульфирования в зависимости от состава сырья на предыдущих стадиях позволит увеличить выработку целевого продукта — АБСК — бо-

лее, чем на 1 % мас.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-38-00487.

Список литературы

1. Гоголев А.Г., Бровко А.В. Экологическиек аспекты производ- ства ЛАБ-ЛАБС // Нефтепереработка и нефтехимия, 2001.—

$$№4.-C.38-39.$$

2. Баннов П.Г. Процессы переработки нефти.— М.: ЦНИИТЭ-нефтехим, 2001.— 625с.

МОДЕЛИРОВАНИЕ ИЗОЭНТРОПИЙНОЙ ТЕХНОЛОГИИ КОМПЛЕКСНОЙ ПОДГОТОВКИ ГАЗА

В.О. Елшин

Научный руководитель - к. т. н., доцент Е.А. Кузьменко

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, yolshinvlad@sibmail.com

Самой распространенной технологией промысловой подготовки газа является процесс низкотемпературной сепарации, применение которого обусловлено не только возможностью обеспечения всех необходимых требований к транспортировке, но и низкими экономическими затратами за счет использования эффекта сброса давления пласта для ступенчатого понижения температуры.

В настоящее время наиболее важной проблемой на газоконденсатных месторождениях является ярко выраженное падение давления пласта в процессе их разработки, и как следствие, невозможность обеспечения режима низкотемпературной сепарации по традиционной технологической схеме.

Предварительно проанализированы экспериментальные данные с установки комплексной подготовки газа (УКПГ) и подготовлен блок исходных данных для расчета температуры на выходе ТДА (табл. 1).

Предложен следующий алгоритм расчета температуры газового потока на выходе из ТДА:

Энтальпия газового потока на выходе из ТДА определяется по формуле:

$$I_0$$
 = A + B (1,8 • T₁ + 32) + C (1,8 • T₁ + 32)² = = 281,7344175 кДж/кмоль

где A, B, C – коэффициенты, полученные в результате аппроксимации экспериментальных значений; C_i – концентрация газовой смеси.

Действительный перепад энтальпии в ТДА рассчитывается по формуле:

$$I = \frac{Q \cdot \mu_{\text{rasa}}}{G \cdot 2\nu} = 0,000802363 \text{ кДж/кмоль,}$$

где Q — холодопроизводительность, кВт; $\mu_{\text{(газа)}}$ — вязкость газа, м²/c; G — массовый расход газа, кг/c; 2v — коэффициент, учитывающий внешние утечки.

Энтальпия газового потока на выходе из ТДА определяется по формуле:

$$I = I0 - I = 281,7336162$$
 кДж/кмоль

Температура газового потока на выходе из ТДА рассчитывается по формуле:

е ланные лля расчет	a
	е данные для расчет

Состав газа	% моль	Давление газа на входе в ТДА, P_1	4,70, MΠa
Метан	87,7952	Давление газа на выходе из ТДА, Р2	6,04, МПа
Этан	4,2497	Температура газа на вхо- де в ТДА, Т ₁	23,43, °C
Пропан	2,7753	Температура газа газа на выходе из ТДА, ${\rm T_2}$	−23,47, °C
Изо-бутан	0,5728	Managaryii nagyar paga C	123,48, кг/с
Бутан	0,5492	Массовый расход газа, G	
Изо-пентаны	таны 0,0963 Коэффициент,учитываю-		0,98
Пентан	0,0051	щий внешние утечки, 2v	
C ₆ ⁺	0,0133	Холодопроизводительность, Q_0	52,73 кВт
Кислород	0,0083		
Азот	3,1514		

$$T_2 = \frac{\frac{-B + \sqrt{B^2 - 4C(A - I_K)}}{2A} - 32}{1.8} = -24,106 \text{ °C}$$

Сравнение полученного значения тем-

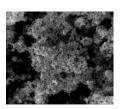
пературы газового потока на выходе из ТДА (-24,196°C) с экспериментальным значением (-23,47°C) показало хорошее совпадение и позволяет судить о правильности выбранного алгоритма расчета.

Список литературы

1. Оганесян А.В. Разработка метода расчета и проектирования водородных турбодетандеров с улучшенными эксплуатационными характеристиками.— Воронеж: Воронежский

- государственный университет, 2006.– 20с.
- 2. Кембел Д.М., Очистка и переработка природных газов // учебное пособие для специалистов нефтегазовой области, 1977.— 352с.

УЛЬТРАДИСПЕРСНЫЙ ПОРОШОК ЖЕЛЕЗА – ОСНОВА КАТАЛИТИЧЕСКОЙ СИСТЕМЫ, ПРИМЕНЯЕМОЙ В СИНТЕЗЕ ФИШЕРА-ТРОПША


А.А. Жданов

Научный руководитель – к.т.н., доцент Е.В. Попок

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, alex10.95@mail.ru

На современном этапе развития нефтехимической промышленности в нашей стране становится очевидным, что применяемые в промышленности технологии не являются ресурсоэффективными, в большинстве своем не инновационны и не отвечают западным стандартам по экологии. Точным и конкретным подтверждением данных проблем является ситуация с попутным нефтяным газом: вместо переработки и получения дополнительной финансовой выгоды, его сжигают, что приводит не только к экономическим убыткам, но и значительно ухудшает экологическую обстановку в районе добычи сырья.

Один из способов решения данной проблемы — применение на самом месторождении или в ином месте установок получения жидких углеводородов (УВ) по методу синтеза Фишера-Тропша (СФТ). СФТ позволяет из синтез-газа

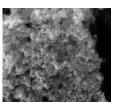


Рис. 1. Снимки поверхности УДП-Fe, сделанные с помощью сканирующего электронного микроскопа Quanta 200 3d