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a b s t r a c t 

This paper presents a new procedure for finding the optimal placement of the phasor measurement units 

(PMUs) in modern power grids to achieve full network observability under normal operating conditions, 

and also abnormal operating conditions such as a single line or PMU outage, while considering the avail- 

ability of PMU measuring channels. The proposed modeling framework is implemented using the fuzzy 

binary linear programming (FBLP) technique. Linear fuzzy models are proposed for the objective func- 

tion and constraints alike. The proposed procedure is applied to five benchmark systems such as the 

IEEE 14-bus, 30-bus, 39-bus, 57-bus, and 118-bus. The numerical results demonstrate that the proposed 

framework is capable of finding a fine-tuned optimal solution with a simple model and acceptable so- 

lution characteristics compared with early works in the literature. Besides, four evaluation indices are 

introduced to assure the various criteria under study such as the observability depth, measurement re- 

dundancy, and robustness of the method under contingencies. The results show that full network observ- 

ability can be met under normal conditions using 20% PMUs penetration; however, under contingencies, 

approximately 50% PMUs penetration is required. The novelty of the proposed procedure has proven the 

capability of the proposed linear fuzzy models to find better optimal number of PMUs with lower num- 

ber of channels compared to other algorithms under various operating conditions. Hence, the proposed 

work represents a potential tool to monitor power systems, and it will help the operators in a smart grid 

environment. 

© 2017 Tomsk Polytechnic University. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Introduction 

Smart grids (SGs) benefit from the continuous improvement in

power systems control and the advances in the intelligent mea-

surement technologies. However, controlling electric power sys-

tems is becoming more and more cumbersome because of the

development of power grid structure and the advance in power

markets complexity, especially in deregulated electricity markets.

Accordingly, efficient utilization of energy resources is a crucial re-

quirement for incorporating SGs that can present a highly reliable

power system with the optimal use of all the available resources.

The existing power grids all over the world require revolutionary

changes to meet the dramatic growing demands and also to make
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he grid smarter and more reliable. Also, the instantaneous moni-

oring of the voltage, current and injected power at all buses in the

etwork is another essential requirement for the SGs as the tra-

itional monitoring systems cannot satisfy this requirement since

hey are designed based on nonlinear power flow equations [1,2] . 

Synchronized phasor measurement devices like PMUs, which

ere first launched in 1980, can measure values of phasor voltages

t the buses where they are located. The phase angles of the bus

oltages measured in the real-time domain have not been possible

et, as the synchronizing measurements from remote locations are

echnically challenging. PMUs can alleviate this problem by realiz-

ng a synchronization for voltage and current waveforms at remote

ocations using the global positioning system (GPS) clock, which

as an accuracy less than 1 μs; this enables new avenues in power

ystems monitoring, security analysis, protection and stability con-

rol. One such new application of PMUs in power systems is the

ault location detection [1] . 
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PMUs present a real-time snapshot of the entire power sys-

em with several critical benefits over the conventional measure-

ent systems, as detailed in [3] , such as the high sampling rate to

nhance the power system dynamic behavior, typically above 30

easurements every second, while providing more simple linear

tate estimation compared to the conventional nonlinear state es-

imation. 

PMU placement at all buses would permit direct measurement

f the network state. But equipping the power system with PMUs

t 100% of the buses is not practical or reasonable because of high

osts of the devices, and also limitations of the substation commu-

ications network. However, complete observability is very desir-

ble in power systems; therefore, the problem of placing PMUs in

 power system to attain a full system observability can be formu-

ated as a constrained optimization problem [4–8] . However, if the

owest number of PMUs is used, there can be situations when lim-

ted communication channels or PMU outages could lead to buses

ecoming unobservable. Therefore, these contingencies have to be

aken into account during the design stage. 

In the literature, several studies have dealt with it. However,

ost of them intended to minimize the number of installed PMUs

sing different sets of constraints to attaining a complete topolog-

cal observable system. In the studies presented by [9–12] , the op-

imal PMU placement under full observability constraint is given.

he availability of communication channels was tackled in [13–15] .

n [15] , the Markov process was employed to find the optimal so-

ution considering channel limitations. However, the channel avail-

bility at each PMU is not considered, nor the single-line or PMU

ontingencies. In [16] , a cellular learning automata (CLA) method

s proposed to find the optimal solution for a complete system ob-

ervability. However, the number of PMU measuring channels was

ot considered. In [17] , a heuristic method was developed for si-

ultaneous optimal PMU placement and phasor data concentra-

ors (PDCs) in a hierarchical structured wide area monitoring sys-

em (WAMS). In [18] , the authors introduced three approaches to

etermine the optimal solution for complete observability, namely

epth first search (DFS), simulated annealing (SA), and minimum

panning tree (MST). The authors presented a three-stage method

hat found the optimal solution using network connectivity infor-

ation in [19] . In the first two stages, PMUs are placed initially at

ll buses, while in the second stage, the set of connected PMUs

as pruned to obtain the optimal PMUs locations. A heuristic

earch method was proposed for complete topological observability

n [20] for full numerical observability in [21] . In [22] , the grenade

xplosion method (GEM) was proposed for finding the optimal so-

ution to provide complete observability. Besides, different meta-

euristic techniques have been suggested for solving the optimal

MU placement problem such as the simplified chemical reaction

ptimization (SCRO) [23] , cellular genetic algorithm (CGA) [24] , hy-

rid discrete particle swarm optimization (HDPSO) [25] , particle

warm optimization algorithm [26,27] , non-dominated sorting dif-

erential evolution (NSDE) algorithm [28] , and topology based for-

ulated algorithms and branch and bound (B and B) optimization

echnique [29] . Also, a method to approach the optimal PMU place-

ent problem with random component outages (RCOs) was sug-

ested in [3] . In the RCO’s model, the state estimation error co-

ariance is minimized. In [30] , large-scale power networks were

onsidered when formulating the optimal placement of monitoring

evices for fault location. Several methods were further presented

n [31–36] , which involve the ant colony and integer linear pro-

ramming optimization techniques. 

Fuzzy logic is one of the efficient tools that incorporated in

he field of power systems. Several applications of fuzzy logic

re examined in [37,38] . In [39] , the prioritization of different

MU placement configurations is based on multi-criteria decision-

aking schemes such as the analytic hierarchy process (AHP), or
he simple weighted average method. A revised AHP for PMU allo-

ation is presented in [6] . 

The traditional PMU allocation problem can be formulated as a

inary linear programming (BLP) problem. However, conventional

LP problems are hard to solve due to uncertainties present in

arameters and the structure; and this may lead to uncertainties

n the decision space. On the other hand, the fuzzy set theory

an be successfully applied under these uncertainties. Added to

hat, allocation of PMU devices faces the problem of uncertainty;

his implies that reducing the number of PMU devices does not

ean it reaches a unique solution. Moreover, it would be non-

ensical to expect that the selected optimal set of PMUs will be

nstalled all at once. The problem with PMU placement aims at

inimizing the number of PMU placement as much as possible.

n fact, the expression “as much as possible” conveys to the fuzzi-

ess in this problem. Consequently, the PMU placement problem

an be modeled in fuzzy environment. In [40] , the optimal PMU

lacement was approached using fuzzy weighted average. An ap-

roach for optimal placement of PMU devices considering fuzzy

ogic based critical buses was presented in [41] . The basics of the

BLP solution methodology were given in [42] . Other effort s to

olve the PMU placement problem were presented in studies [43–

9] . In the studies presented by [43,48] , two optimal PMU loca-

ion approaches were presented for power system state estimation.

he search optimization techniques were developed in [44–48] . In

50] , a Lyapunov exponent-based approach for optimal placement

f PMUs was presented to attain full network observability, and to

evelop real-time system stability monitoring and assessment. The

roposed optimal PMU placement method is limited and tested on

he IEEE 39-bus test system only. Finally, given the fact that less

ttention was paid to the application of fuzzy logic to the optimal

lacement problem as noticed in the literature; accordingly, this

aper proposes a novel linear fuzzy modeling of the allocation of

MUs problem to achieving complete system observability. A com-

arative study is presented to evaluate the proposed procedure for

ormal and abnormal operating conditions. 

aterial and methods 

roblem formulation 

A PMU device installed at bus ‘ i ’ measures the voltage phasor

f that bus (magnitude/angle) and the phasor currents (magnitude

nd angle) of the outgoing lines from the bus directly [43] . The

umber of measured current phasors depends on the availability

f PMU channels. The optimal PMU placement problem for full ob-

ervability considering PMU measuring channels can be expressed

s an optimization problem, as follows: 

inimize f (x ) = 

n b ∑ 

i =1 

ω i x i (1) 

Subject to: 

(x ) = 

n b ∑ 

i, j 

A i j x j > b i (2) 

here, f ( x ) is the objective function has to be minimized concern-

ng the number and locations of PMUs with measuring channels.

 i refers to the normalized weighting factor of the PMU located

t bus ‘ i ’, and this factor reflects the priority of each bus regarding

he predetermined channel numbers at that bus. n b is the size of

he system, i.e. number of buses, and x i is a vector represents the

ecision variables in a binary integer form. 

 i = 

{
1 , if a PMU is installed at bus i 
0 , otherwise 

(3) 
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Fig. 1. Fuzzy membership model for the objective function. 
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This objective function represents the weighted sum of the em-

ployed PMUs. The normalized weighting factors are based on the

system configuration which is exemplified by the total number of

lines connected to bus i plus one that is equivalent to the number

of PMU measuring channels. g(x) given in Eq. (2) is the observ-

ability constraint that must be verified at each bus in the system,

where b is the limiting boundary which refers to the observabil-

ity requirement. Besides, the boundary limit ‘ b ’ indicates the mea-

surement redundancy (MR) at each bus in the system. A ij is the

connectivity matrix which can be constructed based on the system

line data in a binary integer form, so that 

A i j = 

{ 

1 , if i = j 
1 , if buses i and j are connected 

0 , otherwise 
(4)

The framework is intended for maintaining the system fully

observable for all operating conditions, including emergency con-

ditions such as single PMU contingencies. Each bus is observed

by a directly connected PMU or by a pseudo-measurement; how-

ever a bus can be observed twice by one PMU, as the case of

the double circuit. Redundancy is necessary for reliability; there-

fore at least two PMUs should observe each bus. Hence, a single

PMU contingency would sustain observability. In other words, the

framework aims at preserving the monitoring system as reliable as

possible. To achieve the previous observability requirement; the

limiting boundary b should be the minimum limit of MR that may

be taken as; 

b = 

{
1 , for normal operating conditions 
2 , for any single line or PMU outage 

(5)

According to Eq. (5) , a system is fully observable in normal op-

erating conditions if b is equal to 1, which means that each bus

shall be observed at least once. Regarding full observable system

during contingencies such as any single line or PMU outage, each

bus shall be observed at least twice by assigning b equals to 2.

The PMU placement problem is to identify strategic buses, heavily

loaded buses and the buses candidate for possible future expan-

sion, at which PMUs will be installed. 

The following observability rules are considered in the current

allocation procedure [29] . 

Rule 1 : If a bus is outfitted with a PMU, then the voltage and

current phasors of all lines connected to that bus are con-

sidered known. This rule is satisfied with the proposed al-

location procedure, i.e. with the normalized weighting factor

given in (1) . 

Rule 2 : If the current phasor is known on a line, and the volt-

age at one end of the same line is known then the voltage

phasor at the other end of the line can be calculated. The

observability constraints in (2) correctly reflect this rule. As

one PMU, at certain bus i , is sufficient for full observability

of system buses connected to it. 

Rule 3 : If the voltage phasors are measured at both ends of a

line, then the current phasor on the same line can be calcu-

lated using the Kirchhoff Current Law (KCL). 

Rule 4 : For a zero-injection bus (ZIB) with no PMU installed,

if the current phasors of all the incident lines are known,

but one of the incident lines is unknown, then the unknown

current phasor can be determined from KCL. 

Rule 5 : For a ZIB, if the voltage phasors of all adjacent buses

are known, then the voltage phasor of the ZIB bus can be

determined from the node voltage equations. 

Rule 6 : For a set of adjacent ZIBs, if the voltage phasors of the

buses adjacent to them are known, then the voltage pha-

sors of the initial set of adjacent ZIBs can be calculated from

node voltage equations. 
It should be mentioned that Rule 1 refers to so-called di-

ect measurements, but Rules 2 and 3 refer to the pseudo-

easurement. The rest is conditioned to the zero injection buses

ZIB). 

The fuzzy model of the objectives and constraints considers the

revious six rules. The first rule has a direct effect on the normal-

zed weighting factor in the problem objective function, while the

bservability constraints represent the other rules. Hence, in this

ork, the objective of the PMU placement problem is to minimize

he PMUs number that can make the system fully observable and

o maximize the measurement redundancy in the system. There-

ore, for the position vector of each particle, the objective function

hould evaluate: (i) whether the system is observable, (ii) the num-

er of PMUs employed in case the system is observable, and (iii)

he measurement redundancy as defined as in [25,26,51] . 

uzzy modeling of the objective function and the constraints 

In the literature, numerous types of fuzzy membership func-

ions have been used in power system applications [37,38,40–42] .

n this work, linear membership functions are suggested to char-

cterize the control and dependent variables. The following sub-

ections describe in details the fuzzy framework proposed for the

bjective function and the constraints at normal and abnormal op-

rating conditions. 

Fuzzy modeling of the objective function : The fuzzy number of

he objective function of the planned PMU devices is inversely pro-

ortionally to the membership degree which equals 1 when a less

umber of PMUs is needed, but equals zero when a higher num-

er of PMUs is required. Fig. 1 shows the fuzzy modeling of the

bjective function f . 

It can be noted that a unity membership function corresponds

o the lowest number PMU devices. Also, Eq. (6) gives the mem-

ership function of the objective function, μ1 ( f ). 

1 ( f ) = 

n b − f 

n b − 1 

, 1 ≤ f ≤ n b (6)

Substituting (1) into (6) , then 

1 ( f ) = 

n b −
(

n b ∑ 

i =1 

ω i x i 

)
n b − 1 

, 1 ≤ f ≤ n b (7)

According to (7) , the membership degree is dependent on the

ystem size as well as the normalized weighted factor which re-

ects the priority and the number of channels needed for each bus.

Fuzzy modeling of the control variables : The fuzzy modeling

or the PMU state at each bus, i.e. the control variable ( x i ), is shown

n Fig. 2 . 

The meaning behind assigning this member function is to allo-

ate the least number of PMUs. Therefore, the membership degree

ust be assigned to 1 when the PMU is not allocated at bus i . The

embership degree at bus i vanishes when the PMU device is al-

ocated. The membership function for the control variables ( x ), is
i 



R.A. El-Sehiemy et al. / Resource-Efficient Technologies 3 (2017) 542–549 545 

Fig. 2. Fuzzy membership model for the control variable x i . 

Fig. 3. Fuzzy modeling of observability constraints for normal operating condition. 

Fig. 4. Fuzzy modeling of observability constraints for single PMU/line outage. 
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iven as 

2 ( x i ) = −x i + 1 , 0 ≤ x i ≤ 1 (8)

Fuzzy modeling of the observability constraints : The fuzzy

odeling of the observability constraints (previously defined in

q. (2) ), which reflect the observability rules 2–6, is shown in

ig. 3 . The highest membership degree is assigned to the highest

umber of buses seen from bus i where the PMU device is in-

talled. The membership function for the observability constraint

y i ) at bus i, is described as; 

3 ( y i ) = 

y i − 1 

y max 
i 

− 1 

, 1 ≤ y i ≤ y max 
i (9) 

Also, the fuzzy modeling of observability constraints for sin-

le PMU/line outage is given in Fig. 4 . The membership function

or the observability constraint ( y i ) at bus i under the contingency

ondition is described as; 

4 ( y i ) = 

y i − 2 

y max 
i 

− 2 

, 2 ≤ y i ≤ y max 
i (10) 

Additional rules of the proposed allocation procedure aim at

urther reduction of the number of PMU measuring channels while

ach bus is being observed at least once at normal operating con-

itions and twice at system contingencies are given below. The

roposed reduction strategy (RS) rules are based on the MR of the

ystem buses, the connectivity matrix A, and the status of system

perating conditions. 
1) If a bus k is observed n times so that ( n > 1) at normal

operating conditions, then the reduction in PMU measur-

ing channels which are responsible for this observability is

( n −1). Therefore, the bus k will be observed once from only

one PMU. This rule is achieved as shown in Fig. 3 . 

2) If a bus l is observed m times so that ( m > 2) at system con-

tingencies, then the reduction in PMU measuring channels

which are responsible for this observability is ( m −2). There-

fore, bus l will be observed twice from only two PMUs. This

rule is achieved as shown in Fig. 4 . 

Hence, the previous fuzzy modeling considers these rules as

resented in (9) and (10) . 

An additional important issue is the existence of the ZIB, which

orresponds to transshipment nodes in the network. Excluding the

IB from the control variables reduce the problem size. The fuzzy

embership degree at the ZIBs equals 1 which means that no PMU

s allocated at these buses. 

he proposed solution procedure 

The problem is formulated as BLP with fuzzy objectives and

onstraints, i.e. fuzzy binary linear programming (FBLP) which has

he following form: 

aximize 

n b ∑ 

i =1 

c̄ i x i (11) 

Subject to: 

n b 
 

i =1 

ā i j x j ≤ b̄ j j = 1 , 2 , ................., m (12)

here, x i represents the status variable of the PMU device which

xpresses zeros-one decision variables. The coefficients ā , b̄ , and c̄

re expressed as fuzzy numbers. i and j indices refer to bus index

nd the constraint index. n and m are the numbers of system buses

nd considered constraints. 

The solution method of the FBLP presented in (11) and (12) ,

aximizes λ, where: 

= min { μ1 , μ2 , ............... , μi } (13) 

here μi are the membership functions of all the functions (con-

rol and dependent variables and objective), within the zeros-ones

ange. Hence, the fuzzy based PMU allocation problem is turned to

aximizing λ, as follows: 

aximize λ, s . t . (14) 

≤ μi (·) , i = 1 , 2 , 3 ........ n c (15)

here, n c is the numbers of objective and constraints of the PMU

llocation problem. 

Also, with the aid of the fuzzy modeling presented earlier,

qs. (14) and (15) can be turned into maximizing λ, subjected to 

n b 
 

i =1 

ω i x i + ( n b − 1 ) λ ≤ n b (16) 

 i + λ ≤ 1 (17) 

y max 
i − 1 

)
λ − y i ≤ −1 1 ≤ y i ≤ y max 

i (18) 

y max 
i − 2 

)
λ − y i ≤ −2 2 ≤ y i ≤ y max 

i (19) 

Furthermore, four evaluation indices are suggested to measure

he effectiveness of the proposed PMU allocation procedure. The
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Table 1 

Test system data. 

Test system Number of ZIBs ZIB locations Number of lines/branches 

IEEE 14-bus 1 7 20 

IEEE 30-bus 6 6,9,22,25,27,28 41 

England 39-bus 12 1,2,5,6,9,10,11,13,14,17,19,22 46 

IEEE 57-bus 15 4,7,11,21,22,24,26,34,36,37,39,40,45,46,48 78 

IEEE 118-bus 10 5,9,30,37,38,63,64,68,71,81 179 

Table 2 

Optimal number of PMUs and channels under normal operating conditions. 

System Number of PMUs Optimal PMU locations Total PMU channels 

IEEE 14-bus 3 2,6,9 15 

IEEE 30-bus 7 1,2,10,12,15,19,27 34 

England 39-bus 8 3,8,12,16,20,23,25,29 28 

IEEE 57-bus 11 1,4,13,20,25,29,32,38,51,54,56 48 

IEEE 118-bus 28 2,8,11,12,17,21,25,28,33,34,40,45,49,52, 56,62,72,75,77,80,85,86,90,94,101,105,110,114 115 
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first performance index PI 1 measures the PMUs penetration or per-

centage of buses with allocated PMUs ( n PMU ) that reaches com-

plete observability of the studied system relative to the system

size. This index is affected by the system configuration and the sys-

tem size. 

P I 1 = 

n PMU 

n b 

(20)

The second performance index PI 2 measures the sufficient total

PMU channels ( n Channel 
PMU 

) with respect to the system size. 

P I 2 = 

n 

Channel 
PMU 

n b 

(21)

The third evaluation index PI 3 measures the percentage of the

required voltage channels ( n v 
Channel 

) to the system size. Finally, the

fourth index PI 4 gives the percentage of the channels n i 
Channel 

which

are specified for current measurements to number of lines of the

system ( n l ). The suggested evaluation indices considerably reflect

the goodness of the solution of the optimization problem. 

P I 3 = 

n 

v 
Channel 

n b 

(22)

P I 4 = 

n 

i 
Channel 

n l 

(23)

Results and discussion 

Test systems 

The proposed methodology using the fuzzy-based model is ap-

plied to five IEEE benchmark systems to solve the optimal PMU

placement problem. The considered systems are the IEEE 14-bus,

30-bus, 39-bus of the New England network, 57-bus and 118-bus

test system [52,53] . Table 1 shows the number and locations of

zero injection buses (ZIBs) and the branch number for the test sys-

tems [29] . The results using the proposed algorithm are compared

with corresponding results of other optimization methods found in

the literature. 

Results under normal operating conditions 

Table 2 shows the optimal number of PMUs, their location,

and the optimal number of measurement channels for each PMU,

which lead to the full observability of all test systems under nor-

mal operating conditions with a reduced number of total measure-

ment channels. It can be noted that the number of PMUs increases
ith the number of system buses and the total number of chan-

els; otherwise, the number of PMUs diminishes with increasing

IBs in the power system. 

The minimum numbers of allocated PMUs in terms of the total

us number, for the tested systems, are 21.42% for the IEEE 14-

us, 23.33% for the IEEE 30-bus test system, 20.51% for the 39-

us test system, 19.29% for IEEE 57-bus test system, and 23.73%

or the IEEE 118-bus test system. Hence, one can conclude that

he optimal PMUs penetration under normal operating conditions

s around 20% of the system size. 

esults under system contingencies 

Table 3 shows the optimal number of PMUs with the mini-

um number of measurement channels that give each test system

ull observability under system contingencies (single line/PMU out-

ge). Reasonably, the number of PMUs increases compared to the

orresponding results under normal operating conditions. It is no-

iced that the allocated PMUs penetration, in terms of the total bus

umber of the tested systems, varies within the range of 38% for

he IEEE 57-bus to 50% for the rest. Hence, according to the study,

he optimal PMU allocated under abnormal conditions is almost

ouble its value under normal conditions. 

Figs. 5 and 6 demonstrate the allocation of PMUs and number

f channels under different operating conditions for both normal

nd abnormal operating conditions, respectively. 

valuation of the proposed solution 

Assessment using the suggested performance indices : Table 4

resents the proposed evaluation indices for both normal and ab-

ormal conditions. The first performance index varies between

9.29% and 23.72% for the tested power systems in normal oper-

ting conditions, while the range of this index increases at the ab-

ormal conditions for all tested systems to be within 38.59% to

0.84%. This index means at least 20% and 40% of system buses

hould be covered with PMU devices to achieve the acceptable ob-

ervability criterion at normal and abnormal operating conditions,

espectively. As the PI 1 in a real power grid is around 30%, this

eans the power grid is not fully observed under abnormal oper-

ting conditions. 

The second performance index, which measures the ratio be-

ween the numbers of PMU channels to the system size, is var-

ed from 71.8% to 113%, and from 130.77% to 221.4% for the tested

ower systems at normal and abnormal conditions, respectively. As

bvious, the second performance index is almost doubled at abnor-

alities which reflect the need to increase the channels number
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Table 3 

Optimal number of PMUs and channels under abnormal operating conditions. 

System 

Number of 

PMUs Optimal PMU locations 

Total PMU 

channels 

IEEE 14-bus 7 1,2,4,6,9,10,13 31 

IEEE 30-bus 14 1,2,3,7,10,12,13,15,17,18,19,24,27,30 55 

England 39-bus 18 4,8,16,18,20,23,25,26,29,30,31,32,33,34,35,36,37,38 51 

IEEE 57-bus 22 1,2,4,9,12,15,18,19,25,28,29,30,32,33,38,41, 47, 

50,51,53,54,56 

88 

IEEE 118-bus 60 2,3,6,8,10,11,12,15,17,19,21,22,24,25,27,28,29, 

32,34,36,40,42,43, 45,46,49,51,52,54,56,57,59,62, 

66,70,72,75,76,77,79,80,84,85,86,87,89,90,92,94, 

96,100,101,105,107,108,110,111,112,115,117 

229 

Fig. 5. PMUs allocation at different operating conditions using fuzzy based procedure. 

Fig. 6. PMU channels at different operating conditions using fuzzy based procedure. 

Table 4 

Performance indices at different operating conditions. 

System Normal operating conditions Abnormal operating condition 

PI 1 PI 2 PI 3 PI 4 PI 1 PI 2 PI 3 PI 4 

IEEE 14-bus 21.43% 1.0714 0.2143 0.6 50% 2.214 0.5 1.2 

IEEE 30-bus 23.33% 1.1333 0.2333 0.6585 46.67% 1.833 0.4667 1 

England 39-bus 20.51% 0.718 0.2051 0.5263 46.15% 1.3077 0.4615 0.868 

IEEE 57-bus 19.29% 0.8421 0.1929 0.4231 38.59% 1.5439 0.3859 0.8461 

IEEE 118-bus 23.72% 0.9745 0.2372 0.486 50.84% 1.915 0.5084 0.9441 

d  

a

 

c  

t  

a  

i  

l  

n  

0  

0

uring the abnormal operating conditions in a view to preserving

cceptable measurement redundancy. 

The third index measures the percentage of the number of

hannels which are assigned for voltage measuring. It is concluded

hat variation of order 2 is required to effectively measure the volt-

ge signals. Numerically, both the first and the third performance
ndices are typical. The last performance index measures the re-

ation between the current channels with the transmission line

umber. The smallest and largest values of the fourth index equal

.4231 and 0.6585 at the normal operating condition, and equal

.8461 and 1.2 at the abnormal condition, respectively. 
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Table 5 

Comparison results for various test systems using different algorithms at normal operating conditions. 

Algorithm Test systems 

14-bus 30-bus 39-bus 57-bus 118-bus 

Proposed fuzzy based procedure 3 7 8 11 28 

Random component outage [3] 4 – 13 – 32 

Binary PSO (BPSO) [4] 4 9 9 11 32 

Integer linear programming by CEPLEX [13] 3 7 8 11 28 

Depth First search [18] 6 – 16 – 41 

Simulated Annealing Method [18] 4 – 9 – 29 

Minimum spanning tree [18] 3 – 9 – 31 

Non dominated sorting GA [29] 3 7 – 12 29 

Multistage procedure [29] 3 7 8 11 28 

Graph theoretic procedure [29] 5 11 – 19 38 

Tabu search [29] 3 – 10 13 –

Topology based GA [29] 3 7 8 11 29 

Branch and Bound [29] 3 7 9 12 29 

Memetic Algorithms [39] 3 7 12 29 

Binary integer linear programming (BILP) [43] 4 7 – 13 29 

Modified binary PSO [44] 3 7 8 12 29 

Binary Imperialistic competition algorithm [45] 3 7 – 11 28 

Hybrid two-phase search algorithm [47] 3 8 – 11 28 

Integer programming based procedure [48] 3 7 12 28 

Binary search algorithm [49] 3 7 8 – –

Modified GA [52] 3 7 8 11 29 

Table 6 

Optimal PMUs locations for various test systems at system contingencies. 

Algorithm Test systems 

14-bus 30-bus 39-bus 57-bus 118-bus 

Proposed fuzzy based procedure 7 14 18 22 60 

Binary integer programming [12] – 15 25 61 

CPLEX [13] 8 17 22 26 65 

Single shot N-1 security [18] 8 – 18 – 72 

Multistage procedure [19] 7 15 – 26 64 

BILP [43] 9 16 – 25 61 

BPSO [44] 7 15 17 22 62 

BICA [45] 7 13 – 22 61 

ILP [46] – – – 29 64 

Integer programming based procedure [48] 7 17 – 26 65 

Binary search algorithm [49] 7 14 – – –

Modified GA [52] 7 14 17 25 61 
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Comparative evaluation : Table 5 presents a comparison be-

tween the optimal number of PMUs that is obtained using the pro-

posed framework and other studies reported in the literature un-

der normal operating conditions. This comparison reflects the sig-

nificant capability of the proposed method in finding the optimal

number of PMUs with the lowest number of measurement chan-

nels which will reflect on the required installation cost to achieve

full system observability. 

Table 6 presents a comparison between the optimal number of

PMUs that is obtained using the proposed method and those of the

other previously published methods under system contingencies.

As shown, the optimal number of PMUs that obtained by using the

proposed framework is similar to the best corresponding results

presented in the other previous works, taking into account the ad-

ditional limitations of measurement channel number that are con-

sidered in this study. 

Finally, Tables 5 and 6 validate the ability of the proposed

framework in finding the optimal number of PMUs at mini-

mum channels number. Therefore, minimum installation costs are

achieved to make small and large-scale power systems fully ob-

servable under contingencies. 

Conclusion 

In this paper, a novel fuzzy-based procedure to find the optimal

PMU locations while considering the minimum number of PMU

measuring channels for completing topological network observabil-
ty, is proposed. The proposed method is practiced under normal

peration conditions as well as system contingencies. Besides, sev-

ral reduction rules were developed to reduce the number of mea-

uring channels while maintaining complete system observability.

he following main contributions are highlighted: 

√ 

An investigated linear fuzzy modeling of the PMU placement

problem is carried out at different operating conditions. √ 

The fuzzy constraints are ramped according to the operating

requirements and measurement redundancy. √ 

The novelty of the proposed procedure has proven the capa-

bility of the proposed linear fuzzy models to find better (or

the same) optimal number of PMUs with lower number of

channels compared to previous algorithms in the literature

under various operating conditions. √ 

The proposed solution method was validated on five IEEE

benchmark systems for different operating conditions. √ 

The full system observability is satisfied in normal and emer-

gency operating modes. √ 

The PMU channels are integrated to the conventional PMU

placement method. √ 

Four performance indices are suggested to measure the so-

lution quality. These indices assure the observability and the

measurement criteria. √ 

It was concluded from the presented results that the required

PMUs penetrations to satisfy full system observability are
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20% and 50% of the system size under normal and abnormal

operating conditions, respectively. 

Finally, the proposed method may represent a potential tool to

onitor power systems and expand the facilities that allow en-

ancement of the system performance [54] . Also, this will help the

perators in a smart grid environment as the proposed fuzzy-based

llocation procedure is characterized by its novelty and simplicity

o be modeled and solved with multiple objective and constraints. 
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