- Коцупало Н.П., Менжерес Л.Т., Мамылова Е.В., Рябцев А.Д. Способы получения сорбента LiCl-2Al(OH)₃·mH₂O для извлечения лития из рассолов // Химия в интересах устойчивого развития. — 1999. — Вып. 7. — С. 249—259.
- Пат. 2028385 РФ. МПК⁷ В01Ј 20/20, C01D 15/00. Способ получения сорбента для извлечения лития из рассолов. / Н.П. Коцупало, Л.Л. Ситникова, Л.Т. Менжерес. Заявл. 25.05.92. Опубл. 09.02.95. Бюл. № 4.
- Пат. 2089500 РФ. МПК⁶ С01F 7/04, С01D 15/00. Способ получения кристаллического алюмината / Л.Т. Менжерес, Н.П. Коцупало. Заявл. 08.12.94. Опубл. 10.09.97. Бюл. № 25.
- Пат. 2113405 РФ. МПК⁶ С01F 7/04, С01D 15/00. Способ получения алюмината лития / Н.П. Коцупало, Л.Т. Менжерес, В.И. Титаренко, А.Д. Рябцев. Заявл. 09.07.97. Опубл. 10.10.2000. Бюл. № 28.
- Пат. 2050184 РФ. МПК⁶ С01J 20/20, 20/30. Способ получения гранулированного сорбента для извлечения лития из рассолов / Л.Т. Менжерес, Н.П. Коцупало, Л.Б. Орлова. Заявл. 11.02.93. Опубл. 20.12.95. Бюл. № 35.
- Рябцев А.Д., Кишкань Л.Н., Коцупало Н.П., Менжерес Л.Т. Получение хлорида и гидроксида лития из природных рассо-

- лов // Химия в интересах устойчивого развития. 2001. Вып. 9. C. 61—69.
- 11. Пат. 2223142 РФ. МПК⁷ В01Ј 20/20, C01D 15/00. Способ получения сорбента для извлечения лития из рассолов / Л.Т. Менжерес, А.Д. Рябцев, Е.В. Мамылова, Н.П. Коцупало. Заявл. 21.11.2001. Опубл. 10.02.2004. Бюл. № 4
- Полож. решение по заявке 2002133821 РФ. МПК⁷ В01J 20/20, C01D 15/00. Способ получения сорбента для извлечения лития из рассолов / Л.Т. Менжерес, А.Д. Рябцев, Е.В. Мамылова, Н.П. Коцупало. Заявл. 05.12.2002
- Рябцев А.Д., Коцупало Н.П., Кураков А.А., Менжерес Л.Т., Мамылова Е.В. Высокоминерализованные рассолы — сырьё для получения магниевых продуктов // Химия в интересах устойчивого развития. — 2003. — Вып. 11. — С. 539—546.
- 14. Пат. 2196735 РФ. МКИ⁷ С01D 15/02, С25В 1/16, С01D 1/40. Способ получения моногидрата гидроксида лития высокой степени чистоты из материалов, содержащих карбонат лития / А.Д. Рябцев, Н.М. Немков, Л.А. Серикова, В.И. Титаренко, С.В. Сударев. Заявлен 26.07.2001. Опубл. 20.01.2003. Бюл. № 2.

УДК 546.623. 34

ПОЛУЧЕНИЕ ВЫСОКОЧИСТОГО МОНОГИДРАТА ГИДРОКСИДА ЛИТИЯ ИЗ ЛИТИЙСОДЕРЖАЩИХ ОТХОДОВ РАЗЛИЧНЫХ ПРОИЗВОДСТВ

Н.М. Немков, А.Д. Рябцев, В.В. Мухин

3AO "ЭКОСТАР-НАУТЕХ". г. Новосибирск E-mail: kotsu@mail.nsk.ru

Предлагается технология получения моногидрата гидроксида лития из технического карбоната лития и литийсодержащих отходов различных производств.

В настоящее время единственным сырьевым источником для получения соединений лития в России является карбонат лития, импортируемый из Чили. Отечественная промышленность базируется на использовании чилийского карбоната в силу его низкой стоимости, что обеспечивает рентабельность производства литиевых продуктов.

Однако для получения дешевого карбоната лития можно использовать и отечественное гидроминеральное сырьё в виде литиеносных рассолов Сибирской платформы [1], запасы которого практически неисчерпаемы. Другим важным сырьём для получения литиевых продуктов являются литийсодержащие отходы различных производств, потребляющих первичную литиевую продукцию, в основном хлорид и гидроксид лития, и имеющие безвозвратные потери литийсодержащих отходов.

В табл. 1 приводится распределение лития по видам отходов [2]. Из таблицы следует, что твёрдые отходы различных производств представляют собой хлорид лития или смесь хлорида лития и оксида (последний активно взаимодействует с ${\rm CO_2}$ из воздуха, превращаясь в карбонат лития) или метал-

лического Li, карбоната и хлорида лития. В последние годы значительно вырос объём твёрдых литийсодержащих отходов, например, литиевые химические источники тока (ЛХИТ).

Таблица 1. Оценка распределения лития по видам отходов по данным [2]

Область использования	Количество,	Вид	
	% отн.		
Производство химволокна	8090	Твёрдые (LiCl)	
Органический синтез	5060	Жидкие (LiCl)	
Производство	5060	Жидкие (LiCl)	
синтетического каучука и			
эластопластов			
Получение Al-Li сплавов	1015	Шлаки и флюсы	
		(LiCl, Li ₂ O)	
Производство литиевых	2025	Металлический литий,	
химических источников тока		LiCl, Li ₂ CO ₃ .	
(ЛХИТ)		·	
Металлотермическое	9095	Шлаки (LiCl, Li₂CO₃)	
получение редкоземельных			
металлов			

Утилизация лития из ЛХИТ может осуществляться путём механического их измельчения с последующей кислотной обработкой. Для этих це-

лей может использоваться как соляная, так и серная кислоты. Полученные в результате кислотной обработки растворы литиевых солей могут быть переработаны в товарные литиевые продукты с использованием электрохимических методов [3–5]. Любые более концентрированные по литию твёрдые отходы после кислотной обработки легко перерабатываются содовым осаждением в карбонат лития. Однако, при этом получается карбонат лития низкой степени чистоты. По мнению авторов, для получения более чистых литиевых продуктов из литийсодержащих отходов и загрязнённых солей,

включая Li_2CO_3 , целесообразно перерабатывать их в гидроксид лития, используя электрохимические методы, в частности, мембранный электролиз. Электрохимические способы конверсии карбоната лития в гидроксид имеют существенные преимущества по сравнению с химическими способами производства путём взаимодействия Li_2CO_3 с известковым молоком [6], так как позволяют сразу, по более простой схеме, получить литиевую щелочь высокой чистоты при меньших потерях лития.

Однако конверсия Li_2CO_3 в LiOH путём мембранного электролиза водного раствора карбоната

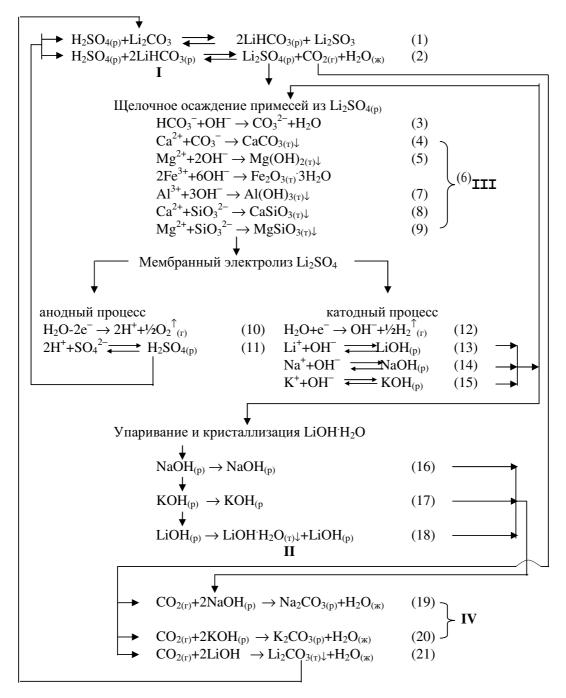


Рис. 1. Химическая схема получения высокочистого LiOH·H₂O из технического карбоната лития: I) исходное сырьё, II) получае-

лития не является оптимальным вариантом решения поставленной задачи. Низкая производительность и высокая энергоемкость процесса электрохимической конверсии при использовании водного раствора карбоната лития, обусловленная низкой растворимостью карбоната лития в воде, являются существенными недостатками при организации крупномасштабного производства.

Устранить указанные недостатки можно путем предварительного перевода карбоната лития в его хорошо растворимую соль.

Для успешного решения поставленной задачи, наиболее приемлемой является соль сульфата лития, что объясняется не только его высокой растворимостью, но и в значительной степени положительной спецификой анодных процессов, протекающих при электролизе раствора $\text{Li}_{i}\text{SO}_{4}$.

Основная анодная реакция при электролизе сульфатного раствора идет с образованием в качестве продуктов кислорода и серной кислоты, что позволяет использовать доступные и не дорогие свинцовые аноды. Кроме того, выделяющийся кислород не создает проблем с его утилизацией, а генерируемая в анолите H_2SO_4 легко нейтрализуется карбонатом лития с превращением его в Li_2SO_4 .

Помимо процесса электромембранной конверсии Li_2CO_3 в раствор LiOH при разработке технологии получения высокочистого LiOH· H_2O должна быть решена проблема удаления содержащихся в карбонате лития примесей Na, Ca, Mg, Al, а также аниона SiO $_2^{3-}$, Cl $^{-}$.

Исследования процесса электрохимической конверсии проводили в гальваностатическом режиме на лабораторной установке с использованием технического карбоната лития чилийской компании SQM (содержание примесей ~1 %). Мембранный электролизёр выполнен в виде аппарата фильтр-прессного типа, включающего катод из нержавеющей стали и свинцовый анод. Межэлектродное пространство электролизера разделено катионообменной мембраной МК-40 на анодную и катодную камеры.

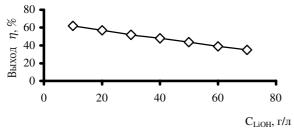
Задача решалась в соответствии с представленной химической схемой получения высокочистого $\text{LiOH} \cdot \text{H}_2\text{O}$ из технического карбоната лития (рис. 1).

Согласно предлагаемой схеме раствор сульфата лития, получают путём нейтрализации H_2SO_4 карбонатом лития по реакциям (1) и (2). При этом наряду с литием в растворимое состояние из технического карбоната лития будут переходить также примесные компоненты и присутствовать в растворе Li_2SO_4 в виде катионов и анионов (Na^+ , K^+ , Ca^{2+} , Mg^{2+} , Al^{3+} , Fe^{3+} , $SiO_3{}^2$ -, Cl^-). Поэтому перед подачей раствора сульфата лития на электрохимическую конверсию его необходимо подщелачивать до pH=11...12 для осаждения этих примесей в виде нерастворимых соединений, образующихся по реакциям (4–9). Очищенный таким образом раствор Li_2SO_4 после фильтрации подают в анодную камеру электролизёра. В процессе электролиза на аноде

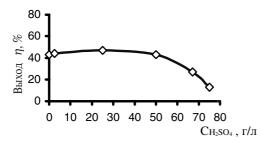
происходит электрохимическое окисление воды с образованием по реакции (10) газообразного кислорода и ионов H^+ . Смесь раствора сульфата лития и анодообразующейся по реакции (11) серной кислоты возвращают на стадию воспроизводства рабочего сульфатного раствора путём нейтрализации серной кислоты карбонатом и бикарбонатом лития по реакции (1) и (2).

В катодное пространство подают разбавленный раствор LiOH, где на катоде происходит реакция электрохимического восстановления воды с образованием газообразного водорода и ионов ОН- по реакции (12). Катионообменная мембрана, разделяющая катодное и анодное пространства электролизера, в силу своих свойств обеспечивает под действием электрического поля беспрепятственный перенос катионов (преимущественно катионов лития в виду их высокого содержания) из анодного пространства электролизера в катодное и исключает перенос анионов. Благодаря этому в катодной камере концентрируется достаточно чистый раствор LiOH по реакции (13). Основными ингредиентами, загрязняющими литиевую щелочь, будут присутствующие в анолите примесные катионы Na⁺ и K⁺, которые не могут быть удалены из анолита на стадии его щелочной очистки, предшествующей электролизу.

Полученный таким образом раствор LiOH, содержащий некоторое количество примесей Na^+ и K^+ , в соответствии с реакциями (14) и (15) выводится на операцию упаривания и кристаллизации LiOH· H_2 O. Частично LiOH используется для подщелачивания раствора Li_2SO_4 перед электрохимической конверсией.


При кристаллизации LiOH· H_2O из упаренного раствора LiOH, реакции — (16—18), ионы Na^+ и K^+ должны преимущественно оставаться в маточном растворе ввиду более высокой растворимости NaOH и KOH. До определенного уровня их содержания в упариваемом растворе не влияют на чистоту получаемых кристаллов LiOH· H_2O . При их накоплении до критического уровня часть маточного раствора выводится из процесса. Для более полного удаления с поверхности маточного раствора полученные кристаллы LiOH· H_2O должны промываться конденсатом.

Для исключения потерь лития отработанные промывные и маточные растворы целесообразно обработать углекислым газом, выделяющимся при нейтрализации серной кислоты (2). При карбонизации щелочного раствора по реакциям (19–21), образующийся плохо растворимый Li_2CO_3 отделяют от жидкой фазы, содержащей Na_2CO_3 и K_2CO_3 , и направляют на операцию нейтрализации отработанного анолита.


Основополагающей характеристикой любого электрохимического процесса являются удельные энергозатраты, необходимые для получения целевого продукта. Основными показателями, определяющими удельные энергозатраты при электролизе, являются напряжение на электролизёре и выход по току целевого продукта. В свою очередь напря-

жение на электролизёре в значительной мере зависит от удельной электропроводности электролита, определяемой, как правило, его концентрацией. Оптимальное содержание Li_2SO_4 в растворе находится в пределах 180...230~г/л. Величина удельной электропроводности такого раствора равна приблизительно $0.09~\text{Cm}\cdot\text{cm}^{-1}$, что в совокупности с относительно невысокими значениями вязкости обеспечивает минимальные затраты энергии на преодоление омических и гидродинамических сопротивлений в данном процессе.

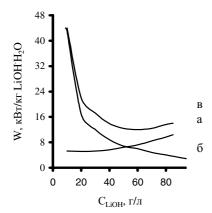

Концентрация щёлочи в катодной камере оказывает влияние на величину потерь напряжения в элементарной ячейке. Но существенно большее влияние концентрация получаемой щёлочи оказывает на другой важный показатель процесса электролиза — выход по току LiOH, величина которого напрямую определяет удельные энергозатраты (рис. 2).

Рис. 2. Зависимость выхода по току (η) от концентрации LiOH

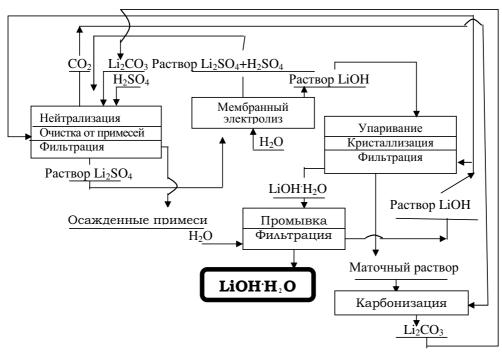
Рис. 3. Зависимость выхода по току конверсионной щёлочи от кислотности анолита. C_{LiOH} =45 г/л

Рис. 4. Зависимость суммарных энергозатрат (в), от концентрации LiOH: a) конверсия, б) упаривание

Кислотность анолита в достаточно широком концентрационном диапазоне (до 55 г/л H_2SO_4) не оказывает существенного влияния на катодный выход по току щёлочи (рис. 3).

Более того, умеренное увеличение кислотности даже улучшает показатели процесса за счёт некоторого повышения переноса ионов лития и увеличения выхода по току примерно на 5 %, т.к. нейтрализация ионов H^+ и OH^- -переносчиков тока компенсируется увеличением доли тока, переносимого ионами Li^+ . Оптимальное содержание H_2SO_4 в анолите при получении щёлочи лежит в пределах 15...40 г/л.

Выполненные ориентировочные технико-экономические расчёты показали, что с точки зрения минимизации суммарных энергозатрат на получение ${\rm LiOH \cdot H_2O}$ в качестве товарного продукта оптимальной концентрацией конверсионной щелочи является величина 40...50 г/л (рис. 4).


Кроме перечисленных параметров, технико-экономические показатели электролиза существенно зависят от плотности тока, т.к. она определяет удельную производительность процесса. Повышение плотности тока от 5 до 15 А/дм² сопровождается увеличением удельных энергозатрат. Вместе с тем, строго пропорционально росту плотности тока, увеличивается удельная производительность процесса при увеличении энергозатрат всего на ~37 %. Поскольку при оптимальном гидродинамическом режиме эксплуатации электролизёра в исследованных областях плотностей тока отсутствует концентрационная поляризация электродов и мембран, целесообразно вести процесс при больших плотностях тока.

Основными примесями, переходящими из карбоната лития в раствор LiOH при электрохимической конверсии, оказались натрий и кальций, содержание которых в получаемом 2М растворе LiOH в установившемся режиме электролиза составляет 35...40 и 12...15 мг/л, соответственно. Уменьшение или увеличение концентрации щелочи не влияет на их относительное содержание в растворе. При этом проведённые исследования показали, что содержание кальция в щелочи может быть уменьшено до значений 2...4 мг/л путем использования очистки анолита карбонатно-щелочным методом. В процессе электролиза переход диоксида свинца в раствор щёлочи происходит незначительно, и PbO₂ удаляется в процессе отделения примесей при фильтрации.

Показатель очистки LiOH· $\mathrm{H}_2\mathrm{O}$ от примесей, перешедших в конверсионную щёлочь путем ее упаривания, кристаллизации и отмывки полученных кристаллов от остатков загрязненного маточного раствора, наглядно иллюстрируется табл. 2.

Таблица 2. Данные сравнительного анализа образцов LiOH·H₂O на содержание примесей после отмывки от маточного раствора

	Содержание Na в № образце, % мас.		Содержание Са в	
№			образце, % мас.	
образца	До	После	До	После
	ОТМЫВКИ	ОТМЫВКИ	ОТМЫВКИ	ОТМЫВКИ
1	0,008	0,0006	<0,003	<0,001
2	0,017	0,0020	<0,004	<0,002
3	0,057	0,0024	<0,006	<0,003
4	0,061	0,0022	0,012	<0,006

Рис. 5. Схема получения LiOH· H_2O из технического карбоната лития

Исследование процесса карбонизации щелочных маточных растворов с операции упаривания и кристаллизации, использование которых уже невозможно для получения ${\rm LiOH\cdot H_2O}$ товарного качества, показало достаточно высокую его эффективность для утилизации лития. Полученный в результате карбонизации ${\rm Li_2CO_3}$ содержит всего 0,007 % мас. Na и 0,043 % мас. Ca, что позволяет возвращать его в технологический цикл на стадию электрохимической конверсии.

Расчёт степени превращения Li_2CO_3 в $LiOH\cdot H_2O$, соответствующий марке ЛГО-1, показал, что потери лития без утилизации лития из маточных растворов с операции кристаллизации $LiOH\cdot H_2O$ составляют 5,4%. При утилизации лития из маточных растворов путём их карбонизации и возврата Li_2CO_3 в технологический цикл потери лития составляют около 1%. На основании полученных результатов разработана технология [7], представленная на рис. 5.

СПИСОК ЛИТЕРАТУРЫ

- Рябцев А.Д. Гидроминеральное сырьё неисчерпаемый источник лития в XXI веке // Физико-технические проблемы атомной энергетики и промышленности (производство, наука, образование). Тез. докл. Междунар. научно-практ. конф. Томск, 2004. С. 126.
- Микушевский В.В., Ватулин И.И. Технология переработки литиевых отходов // Экология и промышленность России. 2003. № 1. С. 23.
- Заявка 2700748 ФРГ. МКИ⁷ С01D 15/02. Способ получения гидроксида лития с высокой степенью чистоты из рассолов, содержащих галогениды лития и др. щелочных металлов, а также галогениды щёлочноземельных металлов // Е. Berkenfeld, Р. Brown. Заявл. 04.03.1976. Опубл. 08.09.1977.

Заключение

Результаты проведённых теоретических и экспериментальных исследований по получению ${\rm LiOH\cdot H_2O}$ из технического ${\rm Li_2CO_3}$ с использованием метода мембранного электролиза через сульфат лития показали, что применение сульфатного раствора лития позволяет вести процесс в интенсивном режиме при высоких плотностях тока и, что не менее важно, допускает использование свинцовых анодов и отечественных катионообменных мембран марки ${\rm MK-40}.$

Для получения моногидрата гидроксида лития высокой степени чистоты может быть использован как привозной чилийский карбонат лития, так и карбонат лития, полученный из высокоминерализованных природных рассолов и литийсодержащих отходов отечественных производств.

- Пат. 2071819 РФ. МПК⁶ В01D 61/44, С25В 1/16. Способ получения гидроокиси лития / В.А. Пермяков, В.В. Мухин, В.Г. Богомолов. Заявл. 10.06.1993. Опубл. 20.01.97. Бюл. № 2.
- Пат. WO 98/59385 A1. МПК⁶ H01M 6/52, 10/54; B01D 61/14; 61/16; 061/18, C02D. Lithium Recovery a purification / K.-W. Mok, P. Pickring, J. Broome. Data of publ. 10 Sep. 1998, PCT.
- 6. Остроушко Ю.И., Бучихин П.И., Алексеева В.В. и др. Литий, его химия и технология. М.: Атомиздат, 1960. 199 с.
- Пат. 2196735 РФ. МПК⁷ С01D 15/02, C25В 1/16, C01D 1/40. Способ получения моногидрата гидроксида лития высокой степени чистоты из материалов, содержащих карбонат лития / А.Д. Рябцев, Н.М. Немков, Л.А. Серикова, В.И. Титаренко, С.В. Сударев. Заявл. 26.07.2001. Опубл. 20.01.2003. Бюл. № 2.