РАСЧЕТ ТЕРМОДИНАМИЧЕСКИХ ПАРАМЕТРОВ МИНЕРАЛОВ, ВХОДЯЩИХ В СОСТАВ ЦЕМЕНТОВ, ИСПОЛЬЗУЕМЫХ В СТРОИТЕЛЬСТВЕ

Е.Е. Белозерцева

Научный руководитель доцент А.Н. Никитенков

Национальный исследовательский Томский политехнический университет, г.Томск, Россия

Моделирование представляет собой исследование объектов, процессов и явлений на основании их моделей с целью получения представления о поведении этих объектов. В гидрогеохимии такими объектами являются подземные воды. В данном случае рассматривается взаимодействие цементов и бетонов с водой.

Одной из проблем, с которой пришлось столкнуться при моделировании процессов, таких как растворение цементов и бетонов при их взаимодействии с водой, образование вследствие этого вторичных минералов и др., является недостаток термодинамических данных для клинкерных минералов, слагающих строительные материалы, используемые повсеместно. Исследование данных взаимодействий необходимо для предотвращений разного рода разрушений любых строительных конструкций, включающих в себя цемент. Это актуально для сферы строительства, так как любому материалу присуща коррозия и разрушение с течением времени, а моделирование данного процесса позволит предпринять наиболее правильные меры для защиты от коррозии, а также спрогнозировать поведение цемента в воде, в зависимости от ее химического состава, состава самого цемента и от климатических условий района строительства.

Целью данной работы является дополнение базы термодинамических данных для минералов, входящих в состав цементов, используемых в строительстве.

Для того, чтобы рассчитать термодинамические параметры для клинкерных минералов можно использовать ряд методов, начиная от практических испытаний и заканчивая теоретическими расчетами. В данном случае использовался второй вариант, который позволил без труда, но с небольшой погрешностью рассчитать энтропию и энергию Гиббса на основе закона Неймана-Коппа и уравнения Гиббса.

Методы расчета основаны на эмпирических корреляциях между физико-химическими величинами. Те же корреляции используются в аддитивных методах расчета. Регрессионный анализ, показывающий корреляции между расчетным термодинамическим потенциалом, составом и некоторыми свойствами соединений, аналогичных изучаемым, включает множество аддитивных методов для расчета термодинамических свойств отдельных соединений. Метод адсорбции Неймана-Коппа с его вариантами был успешно использован ранее при расчете термодинамических свойств силикатных минералов, фосфатов, карбонатов, гидросульфатов, боратов, и других соединений. Погрешность расчета данным способом может составлять менее 5%, что сопоставимо с точностью экспериментальных методик [3]. Термодинамические свойства экспериментально неизученных соединений оценивались с использованием регрессионного анализа на основе классического правила аддитивности Неймана-Коппа [4]:

$$F(A_kB_l) = kF(A) + lF(B)$$

где F - произвольный термодинамический или термохимический потенциал; A и B - структурные единицы (элементы, ионы, оксиды и т. Д.), в которые могут быть разложены изучаемые соединения; k и l - числа структурных единиц.

Основными клинкерными минералами являются алит (трехкальциевый силикат), белит (двухкальциевый силикат), трехкальциевый алюмоферрит. Для двух первых данные термодинамические параметры известны, а для двух других энергия Гиббса и энтропия были рассчитаны следующим образом.

Энтропия соединений была оценена с использованием суммы составляющих оксидов, то есть на основе закона Неймана-Коппа. Например, энтропия четырехкальциевого алюмоферрита $(4CaO*Al_2O_3*Fe_2O_3)$ аппроксимируется следующим образом:

$$\Delta S \; (4CaO^*Al_2O_3^*Fe_2O_3) = 4S(CaO) + S(Al_2O_3) + S(Fe_2O_3)$$

После получения значений энтропии минералов можно вычислить и энергию Гиббса с помощью классической формулы, используемой в термодинамике:

$$\Delta G^{\circ}_{T} = \Delta H^{\circ}_{T} - T\Delta S^{\circ}_{T}$$

В итоге были получены термодинамические параметры для 4 клинкерных минералов, приведенные ниже.

Таблица

Термодинамические параметры клинкерных минералов

Название минерала, формула	Энтропия, Дж/моль-К	Энтальпия, кДж/моль	Энергия Гиббса, кДж/моль
Алит (трехкальциевый силикат), 3CaO*SiO ₂	168,7	2932,58	2786,19
Белит (двухкальциевый силикат), 2CaO*SiO ₂	127,7	2310	2194,64
Трехкальциевый алюминат, 3CaO*Al ₂ O ₃	170,02	-3588.60	-54254,56
Четырехкальциевый алюмоферрит, 4CaO*Al ₂ O ₃ *Fe ₂ O ₃	270,47	-5092.89	-85692,95

В основном агрессивными по отношению к цементному камню являются все кислоты и многие соли. Химическая коррозия имеет место чаще всего, а разрушение происходит наиболее интенсивно. Кислоты и некоторые соли вступают в реакцию с Ca(OH)2 и образуют новые соединения, либо легко растворимые в воде, либо непрочные рыхлые, либо кристаллизующиеся со значительным изменением объема. Иногда это все происходит одновременно. Все кислоты разрушают портландцементный камень. Гипс также кристаллизуется с увеличением объема. Хотя в пластовых водах нет непосредственно соляной и серной кислот (но их образование можно предположить), зато имеется достаточное количество солей, агрессивных по отношению к цементному камню. К таким солям относятся сульфаты (MgSO4, CaSO4), хлориды (MgCl2, CaCl2) [2].

В дальнейшем полученные данные можно будет использовать для моделирования процесса растворения/осаждения цементов и бетонов при взаимодействии с водой в программе ПК Hydrogeo. В базу данных программы вводятся клинкерные минералы с соответствующими термодинамическими параметрами, и, далее, на их основе производится расчет взаимодействия цементов различного состава с водой. В зависимости от соотношений содержания данных минералов и химического состава воды будет наблюдаться различная картина, которая позволит определиться, при каком соотношении минералов в цементе он прослужит дольше и подвергнется меньшему размыву.

Применительно к ПК Hydrogeo это выглядит следующим образом:

DataSource .	Mineral 🛶	Name .	H_298 •	G_mdlg -	G_experin -	S_mdls -	S_experim -	V_mdlv -
Маракушев А.А. Доклады академии і	Al2O3			-1582216,52144				
s++Ball J.W., Nordstrom D.K., Jenne E	AI3PPbSO8(OH)6	Hinsdalite		-4687360,304				0,000142
Маракушев А.А. Доклады академии і	Au2O3			-78663,54				
Маракушев А.А. Доклады академии г	Bi2O3			-493449,3102				
Маракушев А.А. Доклады академии і	Bi2S3			-153213,9584				
s++ 90how/joh	Ca1.019Na.136K		-11005700	-10114100		805,54		0,000333
S++	Ca2Cl2(OH)2(H2							
	Ca2SiO4	белит, двухкальциевый	2310	0	2194,64	127,7	0	
	Ca3Al2O6	трехкальциевый алюми	-3588,6	0	-54254,56	170,02	0	
	Ca3SiO5	алит, трехкалциевый си.	2932,58	0	2786,19	168,7	0	
c	Ca4Al2Fe2O10	четырехкальциевый али	-5092,89	0	-85692,95	270,47	0	
S++	Ca4Cl2(OH)6(H2							
Маракушев А.А. Доклады академии і	Ce2O3			-1707817,111				
Маракушев А.А. Доклады академии і	Ce2S3			-1146575,32				
s++Baes C.F.Jr., Mesmer, R.E.,76:Wil	Co(OH)2			-458545,48				0,0000247
Маракушев А.А. Доклады академии і	Cr203			-1052979,792				
s++Ball J.W., Nordstrom D.K., Jenne E	Cu3(PO4)2(H2O))		-11517987,16				
s++Ball J.W., Nordstrom D.K., Jenne E	CuF			-191338,504				0,0000116
s++Ball J.W., Nordstrom D.K., Jenne E	CuF2			-501456,584				0,00002
s++Ball J.W., Nordstrom D.K., Jenne E	CuF2(H2O)2			-998252,192				0,0000469
Маракушев А.А. Доклады академии і	Dy2O3			-1771362,753				
Маракушев А.А. Доклады академии і	Er203			-1808355,413				
Маракушев А.А. Доклады академии і	Fe2O3			-742498,05				
Маракушев А.А. Доклады академии і	Fe2S3			-151945,66				
Маракушев А.А. Доклады академии і	Ga2O3			-998289,462				
Маракушев А.А. Доклады академии і	Gd2O3			-1731895,263				
: Н 4 8 из 1867 → Н 🗠 🏋 Без фи	льтра Поиск	4			III			

Рис. 1 База данных программы ПК НС

В результате проделанной работы была дополнена база данных термодинамических параметров для клинкерных минералов, то есть были рассчитаны энтропия и энергия Гиббса для трехкальциевого алюмината и четырехкальциевого алюмоферрита. В дальнейшем эти данные позволят моделировать процессы коррозии цементов и прогнозировать, как они будут вести себя при взаимодействии с водой различного химического состава и в различных климатических условиях.

Литература

- 1. Букаты М.Б. Численные методы моделирования геомиграции радионуклидов: Учеб. пособие. Томск: Изд. ТПУ, 2010. 96 с.
- 2. Химическое сопротивление и защита от коррозии: учебное пособие / О. Р. Лазуткина. Екатеринбург: Изд-во Урал. ун-та, 2014. 140 с
- 3. Essené E. J. Thermodynamics of minerals and mineral reactions // Encyclopedia of Life Support Systems, 2002
- 4. Koroleva O.N., M.V. Shtenberg, V.A. Bychinsky, A.A. Tupitsyn, K.V. Chudnenko Methods for calculating and matching thermodynamic properties of silicate and borate compounds // Вестник ЮУрГУ Серия «Химия». 2017 Т.9, №1 С. 39–48

МОНИТОРИНГ ВЛИЯНИЯ ПОЛИГОНА ОТХОДОВ НА СОСТОЯНИЕ ВОДНОГО ОБЪЕКТА-РЕКИ КАМЕНКА (ТОМСКИЙ РАЙОН).

А.Г. Бендер

Научный руководитель профессор О.Г. Савичев *Научный исследовательский Томский политехнический университет, г. Томск, Россия*

Накопление и утилизация отходов жизнедеятельности людей представляет собой серьезную проблему, без эффективного решения которой невозможно долгосрочное развитие общества. Очевидно, что все этапы обращения с отходами должны контролироваться, а соответствующие мероприятия – корректироваться с учетом информации о состоянии полигонов отходов и окружающей среды. Эти контроль и коррекция должны осуществляться на основе достоверной информации, что и определяет актуальность экологического мониторинга, в целом, и мониторинга полигонов твердых бытовых отходов (ПТБО), в частности. Причем мониторинг ПТБО должен проводится на всех