тока легкой фракции, в свою очередь приводило, во-первых, к увеличению потерь товарного изотопного SiF_4 , во-вторых, к снижению концентрации изотопа ^{28}Si . Тем не менее, были выбраны оптимальные параметры работы каскада и его технологическая схема, чтобы снизить обеднение целевого изотопа до незначительной величины и при этом получить максимально чистый продукт.

Первоначально товарные потоки SiF₄, как очистительного, так и разделительного каскадов, отбирались в емкости конденсации для некондиционных продуктов. Проводился постоянный контроль химической чистоты и изотопного состава товарных потоков, и только по достижении требуемого

СПИСОК ЛИТЕРАТУРЫ

- Тихомиров А.В., Курочкин А.В., Елютин А.В., Иванов Л.С. Оценка последовательности трихлорсилановых технологий получения кремния-28 для обеспечения проекта "Авогадро" // Высокочистый моноизотопный кремний. Получение, анализ, свойства и применение: Сб. докл. II Нижегородского совещания. — Нижний Новгород, 19—22 июня, 2003.
- Chumakov A.I., Ruffer R., Leupold O., Barla A., Thiess H., Asthalter T., Doyle B.P., Snigirev A., Baron A.Q.R. Appl. Phys. Lett. -2000. - V. 77. - № 1. - P. 31.

качества рабочего газа потоки переводились в специально подготовленные емкости.

Анализ очищенного продукта на содержание в нем примесей проводился масс-спектрометрическим методом: суммарное весовое содержание примесей, обнаруженных в пределах чувствительности прибора (N_2 , H_2 O, HF, O_2 , Ar, CF_4 , C_2H_6 , CO_2) составило менее 0,025 %. То есть был получен высокообогащенный моноизотопный тетрафторид кремния с химической чистотой более 99,975 %.

Таким образом, была получена опытно-промышленная партия чистого тетрафторида кремния с обогащением по изотопу 28 Si более 99,9 %. Химическая чистота полученного SiF₄ составила более 99,975 %.

- 3. Rogers C.S., Macrander A.T. Nucl. Instr. Meth. Phys. Res. A. − 1993. −V. 335. −№ 3. −P. 561.
- Gasse G., Allport P.P., Hanlon M. IEEE Trans. Nucl. Phys. 2000. – V. 47. – № 3. – P. 527.
- Kuijer P. Nucl. Instr. Meth. Phys. Res. A. 2000. V. 447. № 1–2. – P. 251.

УДК 543.552;541.138

ПРОЦЕССЫ, ПРОТЕКАЮЩИЕ НА РТУТНОМ ЭЛЕКТРОДЕ В РАСТВОРЕ СЕЛЕНА (IV)

С.В. Ковалева, Т.Б. Рубинская, В.П. Гладышев

Томский государственный педагогический университет E-mail: tarub@mail2000.ru

Предложен механизм электродных процессов, протекающих на ртутном пленочном электроде при определении Se(IV) методом инверсионной вольтамперометрии в кислой среде.

Поведение селена (IV) на ртутном капающем электроде (PKЭ) и висячей ртутной капле в условиях классической, переменнотоковой полярографии и вольтамперометрии в кислых электролитах изучено достаточно хорошо. В работах [1–9] предложен следующий механизм восстановления Se(IV). Селен (IV), находящийся в кислых электролитах в форме H_2SeO_3 , восстанавливается по реакции:

$$H_2SeO_3+6H^++6\overline{e}=H_2Se+3H_2O.$$
 (1)

Затем идет реакция окисления ртути в присутствии H₂Se:

$$H_2Se + Hg = HgSe + 2H^+ + 2\overline{e}$$
. (2)

Результатом реакций (1) и (2) является суммарная реакция восстановления H_2SeO_3 до HgSe:

$$H_2SeO_3 + Hg + 4H^+ + 4\bar{e} = HgSe + 3H_2O.$$
 (3)

Дальнейшая катодная поляризация ртутного электрода приводит к восстановлению HgSe до селеноводорода:

$$HgSe+2H^++2\overline{e}=Hg+H_2Se.$$
 (4)

Образование элементного селена на первой стадии восстановления Se(IV) и последующее превращение его в H_2Se предполагается в работах [10–12].

$$H_2SeO_3+4H^++4\bar{e}=Se+3H_2O,$$
 (5)

$$Se+2H^{+}+2\overline{e}=H_{2}Se.$$
 (6)

Нами в работе [13] предложен механизм восстановления Se(IV) на PKЭ с учетом возможности образования амальгамы селена и модифицирования ртутного электрода пленкой HgSe. Факт образования селенида ртути установлен многими исследователями [1—9]. Однако, в отличие от этих данных, в работе [13] сделан вывод о том, что первичным продуктом восстановления Se(IV) является элементный селен, образующийся согласно реакции (5), который затем взаимодействует с ртутью с образованием гомогенной амальгамы HgSe. Полученный таким образом селенид ртути восстанавливается из амальгамы по реакции (4) с выделением селеноводорода.

Переход HgSe в ртутную фазу с образованием амальгамы и последующее модифицирование поверхности ртутного электрода пленкой HgSe при определенной концентрации Se(IV) (~10⁻³ M) в растворе приводит к тому, что на поверхности модифицированного электрода протекают реакции (5) и (6), и только затем реакция (4) [13]. Поскольку пик тока восстановления HgSe намного превышает пик тока восстановления Se(IV) по реакции (5), то он использован для определения Se(IV) полярографическим методом [13], а также методом инверсионной вольтамперометрии [14–18]. Накопление селена в виде селенида ртути в методе инверсионной вольтамперометрии проводят в области потенциалов 0,25...-0,2 В (отн. н.в.э.) [14-18]. В работе [19] нами предложено проводить накопление селена (IV) в ртутной фазе ртутно-пленочного электрода (РПЭ) при потенциалах 0,5...0,6 B (отн. н.в.э.). Выбор этой области потенциалов позволил, с одной стороны, повысить чувствительность определения Se(IV), а с другой стороны, уменьшить мешающее влияние некоторых катионов металлов, так как в указанной области потенциалов они не восстанавливаются, а значит, не накапливаются на электроде.

Аналитическим сигналом в нашем методе [19], как и в полярографическом, а также в методах инверсионной вольтамперометрии, предложенных в [14–18], является пик восстановления HgSe по реакции (4). Однако в нашем случае механизм его образования иной. По нашему мнению, в области предложенных нами потенциалов накопления селена (IV) происходит окисление ртути в присутствии H_2SeO_3 с образованием селенита ртути по реакциям:

$$H_2SeO_3+Hg-2\overline{e}=HgSeO_3+2H^+$$
 (7)
или $H_2SeO_3+2Hg-2\overline{e}=Hg_2SeO_3+2H^+$. (8)

Возможность протекания реакций (7) и (8) подтверждена расчетом стандартных потенциалов по уравнениям:

$$E^{0}=E^{0}_{Hg^{2+}/Hg}+0.0295 \lg \Pi P_{HeSeO}-0.0295 \lg K_{1}K_{2},$$
 (9)

$$E^{0} = E^{0}_{Hg_{2}^{2+}/Hg} + 0.0295 \lg \Pi P_{Hg,SeO_{3}} - 0.0295 \lg K_{1}K_{2}, \quad (10)$$

где ΠP_{HgSeO_3} и ΠP_{HgSeO_3} – произведения растворимости $HgSeO_3$ и Hg_2SeO_3 , K_1 и K_2 – константы ионизации H_2SeO_3 .

Величины ΠP_{HgSeO_3} , ΠP_{HgSeO_3} равны -15,4 для первого соединения и -13,82; -14,2 для второго соединения [20], константы ионизации $H_2SeO_3-1,8\cdot 10^{-3}$ и

 $3,2\cdot10^{-9}$ [21], E^0 для систем Hg^{2+}/Hg и Hg_2^{2+}/Hg равны 0,854 и 0,788 В [22]. Рассчитанные по ур. (9) и (10) стандартные потенциалы реакций равны 0,73 В для реакции (7) и 0,70; 0,71 В для реакции (8), таблица.

При катодной поляризации ртутно-пленочного электрода от потенциала накопления до потенциала получения аналитического сигнала происходит восстановление $HgSeO_3$ или Hg_2SeO_3 в ртутной фазе с образованием HgSe:

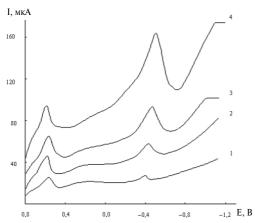
$$HgSeO_3+6H^++6\bar{e}=HgSe+3H_2O,$$
 (11)

$$Hg_2SeO_3+6H^++6\overline{e}=HgSe+Hg+3H_2O.$$
 (12)

Стандартные потенциалы реакций (11) и (12), рассчитанные с использованием значений $\Delta G_{\rm f}^{\rm o}$ для участников реакций [20, 23], равны 0,83 и 0,82 В (табл.), что подтверждает возможность протекания этих реакций. Кроме того, накопление HgSe в ртутной пленке электрода происходит при восстановлении селенистой кислоты. Таким образом, накопление селена в виде HgSe проходит по двум механизмам. За счет этого ток восстановления HgSe возрастает по сравнению с известными методами [14–18], что позволяет снизить предел обнаружения Se(IV).

Проведен расчет стандартного потенциала реакции (4), являющейся аналитическим сигналом, по уравнению:

$${\rm E}^0 = {\rm E}^0_{{\rm Hg}^{2+}/{\rm Hg}} + 0,0295 {\rm lg}\Pi {\rm P}_{{\rm HgSe}} - 0,0295 {\rm lg}\,K_1K_2,$$
 (13) где $\Pi {\rm P}_{{\rm HgSe}} -$ произведение растворимости HgSe, K_1 и K_2 – константы ионизации H₂Se.

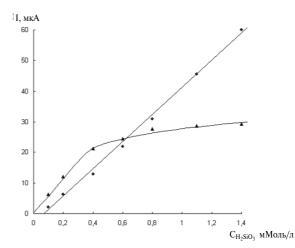

Константы K_1 и K_2 , равные $1,3\cdot 10^{-4}$ и $1,0\cdot 10^{-11}$, взяты из [21], а для $\lg\Pi P_{\text{HgSe}}$ в [20] приводятся три значения -53,8; -58 и -61,73. Величины E^0 , вычисленные по ур. (13), равны -0,29; -0,42 и -0,53 В.

Восстановление HgSe на ртутном электроде в кислых электролитах протекает при потенциалах — 0,34 B [24], > -0,28 B [8], -0,31 B [9] (отн. н.в.э.). Экспериментально полученное нами значение потенциала пика восстановления HgSe на ртутном макрокатоде, равное $-0,34\pm0,02$ В, близко к рассчитанным величинам и к величинам, приведенным в работах [9, 24].

Для подтверждения расчетных величин и механизма электродного процесса с участием Se(IV) были сняты вольтамперные кривые $P\Pi \ni B$ в растворе, содержащем 0,1...1,4 ммоль/л H_2SeO_3 , некоторые из которых приведены на рис. 1.

Таблица. Потенциалы электродных реакций с участием селена на ртутном электроде

	Е°, В (н.в.э.)		
Реакция	Литературные	Расчет	Эксперимент
	данные		
$HgSeO_3 + 2H^+ + 2\bar{e} = H_2SeO_3 + Hg$		0,73	1
$Hg_2SeO_3 + 2H^+ + 2\bar{e} = H_2SeO_3 + 2Hg$		0,700,71	}0,60±0,02
$HgSeO_3 + 6H^+ + 6\bar{e} = HgSe + 3H_2O$		0,83	
$Hg_2SeO_3 + 6H^+ + 6\bar{e} = HgSe + Hg + 3H_2O$		0,82	
$HgSe + 2H^{+} + 2\bar{e} = Hg + H_{2}Se$	-0,34 [24]	- 0,29	
	>-0,28 [8]	-0,42	$-0,40\pm0,02$
	-0,31 [9]	-0,53	


Рис. 1. Катодные вольтамперограммы H₂SeO₃ на РПЭ без накопления (V_p = 50 мB/c), ммоль/л: 1) 0,2; 2) 0,4; 3) 0,8; 4) 1,4

Как видно из рис. 1, на вольтамперной кривой наблюдаются два пика тока с E_n =0,60±0,01 В и E_n =-0,40±0,02 В, высота которых пропорциональна концентрации H_2 SeO₃, рис. 2, что свидетельствует об участии Se(IV) в электродных реакциях.

Начало съемки вольтамперной кривой находится в области потенциалов накопления $HgSeO_3$, Hg_2SeO_3 . Поэтому первый пик на вольтамперной кривой, по нашему мнению, отвечает реакции (7) или (8). Появление второго пика тока связано с восстановлением селенида ртути по реакции (4).

СПИСОК ЛИТЕРАТУРЫ

- Lingane J.J., Niedrach L.W. Polarography of selenium and tellurium.
 The +4 states // J. Amer. Chem. Soc. 1949. V. 71. № 1. P. 196—204.
- 2. Jonas K. Beitrage zur Polarographie des Selens (IV) // Acta. Chim. Hung. -1960. -V. 25. -P. 379-389.
- 3. Christian G.D., Knoblock E.C., Purdy W.C. Polarography of selenium (IV) // Anal. Chem. −1963. −V. 35. −№ 9. −P. 1128−1132.
- Christian G.D., Knoblock E.C., Purdy W.C. Use of highly acid supporting electrolytes in polarography. Observed changes in polarographic waves of selenium (IV) upon standing // Anal. Chem. 1965. V. 37. № 3. P. 425–427.
- Кузнецов В.В., Садаков Т.А. Полярография селенистой кислоты // Журнал аналитической химии. 1963. Т. 18. № 12. С. 1486—1491.
- Nangniot P. Determination polarographique rapide du selenium dans les vegetaux // J. Electroanal. Chem. — 1966. — V. 12. — № 3. — P. 187—193.
- Каплан Б.Я., Ширяева О.А. О механизмах восстановления селена (IV) и теллура (IV) на ртутном электроде // В сб.: Электрохимические методы анализа. М.: Металлургия, 1972. С. 166—170.
- Christian G.D., Buffle J., Haerdi W. Study of selenium (IV) at a dropping mercury electrode by cyclic voltammetry with triangle polarization // J. Electroanal. Chem. – 1980. – V. 109. – № 1–3. – P. 187–194.
- Jarzabek G., Kublik Z. Cyclic and stripping voltammetry of Se(+4) and Se(-2) at the HMDE in acidic media // J. Electroanal. Chem. 1982. V. 137. № 2. P. 247–259.
- Сперанская Е.Ф. Электрохимические процессы на ртутном и амальгамном электродах. — Алма-Ата: Наука, 1978. — 232 с.

Рис. 2. Зависимость величины тока катодных пиков восстановления H_2SeO_3 от концентрации на РПЭ без накопления ($V_0 = 50 \text{ мB/c}$): 1) первый пик; 2) второй пик

Таким образом, потенциалы пиков, полученных экспериментально, близки расчетным величинам. А предложенный в данной статье механизм электродных реакций на ртутном электроде с участием H_2SeO_3 подтверждает наши результаты, изложенные в статье [19], где описан способ определения Se(IV) на РПЭ при накоплении его в области потенциалов 0,5...0,6 В (отн. н.в.э.) по пику восстановления HgSe.

- Shafiqul Alam A.M., Vittori O., Porthault M. Étude du sélénium (IV) en milieu acide par polarographie classique, et à tension alternative, et par voltammétrie à balayage linéaire // J. Electroanal. Chem. – 1975. – V. 61. – № 2. – P. 191–204.
- Stara V., Kopanica M. Differential pulse polarographic determination of selenium and tellurium and their mixtures // J. Electroanal. Chem. −1979. −V. 101. −№ 2. −P. 171−175.
- Ковалева С.В., Гладышев В.П., Диденко Г.Ф. Полярография селенистой кислоты в сернокислом растворе // Украинский химический журнал. — 1991. — Т. 55. — № 3. — С. 300—303.
- Peerzada N., Pessina L. Determination of selenium (IV) in biological sample by cathodic stripping voltammetry // Anal. Lett. 1990.

 V. 23. № 11. P. 2027–2035.
- Jarzabek G., Kublik Z. Determination of traces of selenium (IV) by cathodic stripping voltammetry at the hanging mercury drop electrode // Anal. Chim. Acta. – 1982. – V. 143. – P. 121–130.
- Rahmalan bin Ahmad, Hill J.O., Magee R. Direct determination of selenium (IV) in biological samples by cathodic-stripping voltammetry // Analyst. – 1983. – V. 108. – № 1288. – P. 835–839.
- Adeloju S.B., Bond A.M., Hughes H.C. Determination of selenium, copper, lead and cadmium in biological materials by differential pulse stripping voltammetry // Anal. Chim. Acta. — 1983. — V. 148. — P. 59—69.
- Gustavsson I., Mattsson G. Determination of selenium in water samples using differential pulse cathodic stripping voltammetry (DPCSV) // J. Heyrovsky Centennial Congr. Polarogr. Organ. Jointly 41st Meet. Int. Soc. Electrochem., Prague. Aug. 20–25, 1990: Proc. 1. Aug. 20–21. – Praha, 1990. – P. 91.
- Рубинская Т.Б., Ковалева С.В., Кулагин Е.М., Гладышев В.П. Определение селена (IV) на ртутно-пленочном электроде методом инверсионной вольтамперометрии // Журнал аналитической химии. – 2003. – Т. 58. – № 2. – С. 187–192.

- Кумок В.Н., Кулешова О.М., Карабин Л.А. Произведение растворимости. — Новосибирск: Наука, 1983. — 267 с.
- Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1989. 448 с.
- Справочник по электрохимии / Под ред. А.М. Сухотина. Л.: Химия, 1981. – С. 124–154.
- Карапетьянц М.Х., Карапетьянц М.Л. Основные термодинамические константы неорганических и органических веществ. — М.: Химия, 1968. — 470 с.
- 24. Vajda F. Stripping voltammetry of Se(IV) compounds with the hanging drop electrode // Acta chim. acad. Sci. Hung. − 1970. − V. 63. − № 3. − P. 257–265.

УДК 541.128

МОДЕЛИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ РЕЖИМОВ СИНТЕЗА ФИШЕРА-ТРОПША

Н.В. Ушева, А.И. Левашова, О.Е. Мойзес, И.М. Федяева, А.В. Кравцов

Томский политехнический университет E-mail: kravtsov@tpu.ru

С помощью математической модели, разработанной на кафедре ХТТ ТПУ, исследовано влияние технологических параметров на основе экспериментальных данных, в том числе и опубликованных в литературе. Проведены исследования ее применимости для описания технологических процессов.

Получение углеводородов топливного назначения и олефинов из синтез-газа по Фишеру-Тропшу в последнее время вновь привлекает внимание многих исследователей, химических компаний. Данный процесс даёт возможность на основе простейших газов (СО и $\rm H_2$) получать множество продуктов: углеводороды — от метана до твёрдых высокоплавких парафинов; спирты — от метанола до эйкозанола и выше; карбоновые кислоты, сложные эфиры, альдегиды, кетоны, потребность в которых исчисляется сотнями тыс. и млн т в год [1, 2].

Целью данной работы являлось выяснение перспектив развития и целесообразности промышленного синтеза ФТ и исследование влияния технологических параметров на процесс с помощью математической модели. На основе опубликованных в литературе экспериментальных данных были проведены исследования её применимости для описания процессов, проводимых в технологических режимах, отличающихся температурой, давлением, объёмной скоростью и составом синтез-газа.

Для осуществления ФТ-синтеза в промышленном и полупромышленном масштабе разработано большое число конструкций аппаратов: с неподвижным и псевдоожиженным слоем катализатора, а также барботажных колонн с суспендированным катализатором [3–5].

Несмотря на сравнительную сложность конструкции, аппараты с неподвижным слоем катализатора наиболее приспособлены для проведения таких сильно экзотермических реакций, как синтез из СО и H_2 , и позволяют достаточно надёжно управлять процессом. В связи с этим математическая модель, разработанная на кафедре XTT, основана на модели квазигомогенного политропического трубчатого реактора идеального вытеснения с неподвижным слоем катализатора в стационарном

режиме. Катализатор CA-1M, на котором были получены экспериментальные данные синтеза, также был приготовлен на кафедре XTT обработкой промышленного плавленого железного катализатора в потоке низкотемпературной плазмы. Для данного катализатора характерно селективное образование более лёгких жидких парафиновых углеводородов для фракции 165...310 °C (C_9 – C_{15}) до 70 %.

На математической модели были проведены исследования по влиянию состава сырья, температуры, объёмной скорости и диаметра контактной трубки на показатели процесса. Расчёты, проведённые на модели, показали, что она адекватно описывает реальный процесс (табл. 1), позволяет подобрать оптимальные режимы работы промышленных установок и оперативно отслеживать поведение процесса при изменениях технологических параметров.

Таблица 1. Сопоставление расчётных и экспериментальных данных синтеза из CO и H_2 , катализатор CA-1M (T=513 K; P=0.9 $M\Pi a$; o.c.=150 y^{-1} ; $CO:H_2=1:2,2$)

	Содержание			
Углеводороды	углеводородов, % мол.			
3131сводороды	эксперимент	расчёт		
	34,0	33,5		
C_2	5,30	5,22		
C ₃	11,5	11,5		
C ₄	8,20	8,22		
C ₅	3,80	3,67		
C ₆	3,00	2,85		
C ₇	4,00	4,22		
C ₈	2,00	2,20		
C ₉	1,50	1,71		
C ₁₀	0,50	0,56		
C ₁₁	0,40	0,46		
C ₁₂ (C ₁₂ -C ₁₈)	9,80	9,96		
C ₁₃ (C ₁₉ -C ₃₅)	10,7	10,8		
C ₁₄ (вышеС ₃₅)	5,10	5,13		