АЛГОРИТМ ЧИСЛЕННОГО РЕШЕНИЯ СОПРЯЖЕННОЙ ЗАДАЧИ ДЛЯ СИСТЕМЫ ЖИДКОСТЬ-ДЕФОРМИРУЕМОЕ ТЕЛО

<u>С.В. Белов,</u> А.П. Жуков, А.В. Бельков

Научный руководитель: старший научный сотрудник, д.ф.-м.н. С.В. Пономарев НИИ прикладной математики и механики Томского государственного университета, Россия, г. Томск, пр. Ленина, 36, 634050 E-mail: <u>belovsv@niipmm.tsu.ru</u>

CONJUGATE PROBLEM SOLUTION ALGORITHM FOR FLUID-DEFORMABLE BODY SISTEM

<u>S.V. Belov</u>, A.P. Zhukov, A.V. Belkov Scientific Supervisor: Dr. S.V. Ponomarev Research Institute of Applied Mathematics and Mechanics, National Research Tomsk State University Russia, Tomsk, Lenin str., 36, 634050 E-mail: belovsv@niipmm.tsu.ru

Abstract. This paper describes the conjugate problem solution algorithm via subproblems which, in its turn, are based on physical principles, discrete movable boundaries, specific boundary and conjugation conditions.

Введение. Появление интереса к сопряженным задачам в первую очередь было обусловлено необходимостью дальнейшего совершенствования конструкций твердотопливных ракетных двигателей [1-5]. При постановке сопряженной задачи существуют, по крайней мере, две области пространства, заполненные средами с различным физическим поведением. Для описания состояния таких сред используются различающиеся наборы физических величин, дифференциальных уравнений, граничных условий. На границе раздела среды взаимодействуют друг с другом. Это взаимодействие математически формулируется в виде условий сопряжения, представляющих условия неразрывности на границе сил, температур, тепловых потоков и т.д. Граница раздела сред может перемещаться и деформироваться, что должно учитываться при постановке задачи.

Метод расчета. Для подвижной области жидкости $\Omega_{\mathbb{X}}(t)$, имеющей границу $\partial \Omega_{\mathbb{X}}(t)$, законы сохранения записываются в виде

$$\frac{d}{dt}\int_{\Omega_{\mathbb{X}}(t)}W(t)d\Omega + \int_{\partial\Omega_{\mathbb{X}}(t)}\overline{Q}_{W}(t)\cdot d\overline{S} = 0,$$

где W(t) – принимает значения плотности, компонент скорости, энергии; $\overline{Q}_W(t)$ – вектор плотности поток величины W через элемент dS границы $\partial\Omega_{\mathfrak{K}}$. Вектор плотности потока $\overline{Q}_W(t) = W(t) \cdot \overline{\upsilon} \cdot (\overline{\upsilon} - \overline{\upsilon}_{\Gamma}) + \overline{\xi}(P, \upsilon, \mu)$, где $\overline{\upsilon}, \overline{\upsilon}_{\Gamma}$ – скорость жидкости и скорость границы; $\overline{\xi}$ – слагаемое, обусловленное граничным взаимодействием, P, μ . – давление и вязкость.

При переходе к эйлеровому описанию граница $\partial \Omega_{\mathfrak{K}}$ неподвижна. Решение на временном отрезке $[t, t+\Delta t]$ ищется при условиях $\upsilon = \upsilon_{\Gamma}$ на $\partial \Omega_{\mathfrak{K}}$ и $\frac{d\Omega_{\mathfrak{K}}(t)}{dt} = \int_{\partial \Omega_{\mathfrak{K}}(t)} \overline{\upsilon_{\Gamma}} \cdot d\overline{S}$.

Нестационарное напряженно-деформированное состояние твердого тела, занимающего область $\Omega_{\rm T}$ с границей $\partial\Omega_{\rm T}$ описывается системой уравнений:

26 ХV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

$$\rho_T \ddot{u}_i = \left(\sigma_{kj}\left(\delta_{ij} + u_{i,j}\right)\right)_{,k}; \quad \varepsilon_{ij} = \frac{1}{2}\left(u_{i,j} + u_{j,i} + u_{l,i}u_{l,j}\right); \quad \sigma_{ij} = \sigma_{ij}(\varepsilon_{im});$$

где ρ_T – плотность; *u* – вектор перемещения точки твердого тела; σ и ε – тензоры напряжений и деформаций. На границе $\partial \Omega_T$ ставятся условия Дирихле (перемещения) и условия Неймана (напряжения). В области Ω_T ставятся нулевые начальные условия.

На границе раздела сред Г (Г= $\partial \Omega_{\mathbb{K}} \cap \partial \Omega_{T}$) ставятся условия сопряжения

 $\upsilon(x,t) = \dot{u}(x,t), x \in \Gamma(t), \sigma_{\mathcal{K}} n = \sigma_T n, x \in \Gamma(t).$

Для численного решения сопряженной задачи области $\Omega_{\mathcal{K}}$ и Ω_T покрываются сетками. Решения представляются векторами узловых значений V, P, U, U, причем $\upsilon \rightarrow V$, $P \rightarrow P$, $u \rightarrow U$, $\dot{u} \rightarrow \dot{U}$. Алгоритм решения сопряженной задачи на временном отрезке [t, $t+\Delta t$] имеет следующий вид:

1. На момент времени t, из предыдущего расчета, известны вектора V^t, P^t, U^t, \dot{U}^t , а также граница Γ^t .

2. Решается подзадача течения жидкости в области $\Omega_{\mathcal{K}}(t)$ и исходя из V^t, P^t и Γ^{t} рассчитываются V^{t+ Δt} и P^{t+ Δt}, используя в качестве условий на Γ^{t} соответствующие компоненты вектора \dot{U}^{t} .

3. Из V^{*t*+ Δt} и P^{*t*+ Δt} находится вектор поверхностных узловых сил F^{*t*+ Δt}, действующих со стороны жидкости на твердое тело на поверхность Γ^t .

4. Решается подзадача упругости в области $\Omega_T(t)$, использующая в качестве условий Неймана силы $F^{t+\Delta t}$, результатами являются $U^{t+\Delta t}$, $\dot{U}^{t+\Delta t}$ и граница $\Gamma^{t+\Delta t}$.

5. Если выполняется условие $|X^{t+\Delta t} - X^t| < \varepsilon$, где X – вектора V и P, то решение сопряженной задачи в момент времени $t+\Delta t$ считается найденным. В противном случае делается переход к п.2, причем вектора V, P, U и граница Г возвращаются к V^t, P^t, U^t и Г^t, но для Ú сохраняется состояние Ú^{t+\Deltat}.

6. Выполняется переход $\Omega_{\mathcal{H}}(t) \to \Omega_{\mathcal{H}}(t+\Delta t)$ путем корректировки граничных узлов ($\Gamma^{t} \to \Gamma^{t+\Delta t}$), последующим смещением внутренних узлов сетки и интерполяцией решения со старой сетки (t) на новую сетку ($t+\Delta t$).

На шестом шаге алгоритма для обновления положений внутренних узлов сетки применялся метод на основе решения эллиптических уравнений. Для этого в области $\Omega_{\mathcal{K}}$ ставилась задача упругости, а на границе $\partial \Omega_{\mathcal{K}}$, которая включает Г, ставились условия Дирихле в виде перемещений граничных узлов, определенных из решения задачи упругости для области Ω_T (четвертый шаг алгоритма).

Разделение по физическим процессам разрешало проблему совместимости методов описания Эйлера и Лагранжа. Кроме этого такое разделение позволило использовать независимые программные решения, которые связывались между собой процедурой обмена данными.

Численные результаты. Рассматривалось течение жидкости в осесимметричном сосуде (рисунок 1). В наполнителе имеется канал, со стенок которого вдувается жидкость. Геометрические параметры сосуда: длина – 10,45 м; внешний радиус – 1,5 м;. Материала стенки сосуда: модуль упругости – 2·10¹¹ Па; коэффициент Пуассона – 0,3; плотность – 1700 кг/м3. Материала наполнителя: модуль упругости – 0,125·10⁵ Па; коэффициент Пуассона – 0,497; плотность – 1800 кг/м3. Жидкая фаза: плотность – 1,4 кг/м3; показатель адиабаты – 1,4; динамическая вязкость – 18·10⁻⁶ Па·с. Скорость вдува

Россия, Томск, 24-27 апреля 2018 г.

ХV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

- 0,25 м/с. На рисунке 2 показано рассчитанное распределение компоненты скорости v_z на оси симметрии сосуда (ось *Z*) в различные моменты времени.

Выводы. При использовании предложенного алгоритма получены качественно непротиворечивые результаты. В дальнейшем необходима количественная проверка данного алгоритма.

Результаты были получены в рамках выполнения государственного задания Минобрнауки России, проект № 9.9063.2017/БЧ.

Рис. 1. Сосуд с нежестким наполнителем: Ω_ж – область жидкости; Ω_T – область твердого тела; Г – граница раздела жидкость-твердое тело

СПИСОК ЛИТЕРАТУРЫ

- Kumar M., Kuo K.K., Effect of deformation on flame spreading and combustion in propellant cracks. AIAA Journal, Vol. 19, No. 12, 1981, p. 1580-1589
- Милехин Ю.М., Ключников А.Н., Попов В.С., Мельников В.П. Сопряженная задача моделирования внутрибаллистических характеристик РДДТ. // Физика горения и взрыва т.48, №1, 2012, с. 38-46
- Fiedler R., Jiao X., Namazifard A., Haselbacher A., Najjar F., Parson I.D., Coupled fluid-structure 3-D solid rocket motor simulations. // AIAA-2001-3954
- 4. Fiedler R.A., Breitenfeld M.S., Jiao X., Haselbacher A., Geubelle P., Guoy D., Brandyberry M., Simulations of slumping propellant and flexing inhibitors in solid rocket motors // AIAA-2002-4341
- 5. Engel M., Griebel M., Flow simulation on moving boundary-fitted grids and application to fluidstructure interaction problems // Int. J. Numer. Meth. Fluids, 2006, 50: 437-468.