ИЗМЕРЕНИЕ АСИММЕТРИИ ФОТОРОЖДЕНИЯ ОТРИЦАТЕЛЬНО-ЗАРЯЖЕННЫХ ПИОНОВ ЛИНЕЙНО-ПОЛЯРИЗОВАННЫМИ ФОТОНАМИ НА ТЕНЗОРНО-ПОЛЯРИЗОВАННЫХ ДЕЙТРОНАХ

<u>В.В. Гаузштейн</u>, Б.И. Василишин, А.Ю. Логинов Научный руководитель: д.ф-м.н. Ю.Ю. Крючков Национальный исследовательский Томский политехнический университет, Россия, г.Томск, пр. Ленина, 30, 634050 E-mail: gauzshtein@tpu.ru

MEASUREMENT OF ASYMMETRY OF PHOTOPRODUCTION OF NEGATIVE-CHARGED PIONES BY LINEAR-POLARIZED PHOTONS ON TENSOR-POLARIZED DEUTRONS

V.V. Gauzshtein, B.I. Vasilishin, A.Yu. Loginov Scientific Supervisor: Prof., Dr. Yu.Yu. Kryuchkov Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: gauzshtein@tpu.ru

Abstract. The first results of a double polarization experiment on the determination of the asymmetry of the π meson photoproduction reaction by a linearly polarized photon on a tensor-polarized deuteron in the virtual photon energy range (300-700 MeV) are presented in the paper. The measurements were performed on the internal tensor-polarized deuterium target of the VEPP-3 electron-positron storage ring at an electron beam energy of 2 GeV. In the experiment, the method of recording two protons and a scattered electron for coincidence was used. The obtained measurement results are compared with the theoretical predictions made in the impulse approximation taking into account the πN and NN rescattering in the final state.

Введение. В настоящее время большой интерес вызывают двойные поляризационные эксперименты, в которых поляризованный пучок взаимодействует с поляризованной мишенью. Такие эксперименты дают принципиальную возможность измерения т.н. двойных (двухспиновых) поляризационных наблюдаемых. Анализ полученных экспериментальных данных по двойным поляризационным наблюдаемым может дать новую и дополнить существующую информацию о структуре дейтрона и динамике NN -, πN - и πNN -систем на малых расстояниях. В данной работе представлены первые результаты двойного поляризационного эксперимента по выделению асимметрии реакции фоторождения π^- -мезона на тензорно-поляризованном дейтроне линейно-поляризованным квазиреальным фотоном.

Постановка эксперимента. Эксперимент был проведен на электрон-позитронном накопителе ВЭПП-3 с энергией электронного пучка 2 ГэВ. На рис. 1 приведена схема эксперимента. Два плеча основного детектора, регистрирующего два адрона на совпадение, размещались симметрично относительно оси электронного пучка. В каждом плече детектора осуществлялась идентификация протонов, измерение их углов вылета в диапазонах полярных углов $\Delta \theta = (50^\circ - 90^\circ)$ и азимутальных углов $\Delta \phi = \pm 30^\circ$ относительно медианной плоскости детектирующей системы, измерение энергии

ХV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

протонов в диапазоне (50 – 200) МэВ с точностью не хуже 10% и определение координат вершины ppсобытий с точностью 1 мм. В работе [1] представлено более детальное описание протонных годоскопов и поляризованной дейтериевой мишени. Электроны, рассеянные на 1.6±0.4 градуса регистрировались двумя немагнитными ливневыми детекторами, которые размещались симметрично относительно пучка падающих электронов, и их медианная плоскость совпадала с медианной плоскостью основного детектора. Ливневые детекторы были установлены на вакуумную камеру накопителя на расстоянии 630 мм от центра мишени и обеспечивали эффективную регистрацию электронов с энергией более 1.3 ГэВ в диапазоне углов рассеяния $\theta_e = (1.2^\circ - 2^\circ)$ и $\Delta \varphi_e = \pm 30^\circ$.

Рис. 1. Схема эксперимента: 1 – электронный пучок, 2 – накопительная ячейка-мишень, 3 – дрейфовые камеры протонных годоскопов, 4 – триггерные сцинтилляционные счетчики, 5 – вершинные дрейфовые камеры, 6 – LQ-поляриметр мишени, 7 – сцинтилляционные детекторы на основе CsI-кристаллов, 8 – сцинтилляционные детекторы на основе NaI-кристаллов, 9 – вольфрамовый конвертер, 10 – электронные ливневые детекторы

Результаты измерений. Результаты эксперимента представлены на рис. 2. На левом графике показана зависимость асимметрии A реакции $\gamma d \rightarrow pp\pi^-$ от энергии фотона E_{γ} . На правом графике представлена зависимость асимметрии A от инвариантной массы пион-нуклонной подсистемы $M_{p\pi}$. Для каждой точки показана статистическая ошибка и интервал усреднения (по E_{γ} или по $M_{p\pi}$). В каждом интервале были учтены все имеющиеся экспериментальные события с учетом ограничения некомпланарности на азимутальные углы вылета протонов: $|\phi_2 - \phi_2 - \pi| < 20^\circ$. Суммарная систематическая ошибка не превышает 10%, так что определяющими являются статистические ошибки измерения A.

Асимметрия *А* зависит (с учетом энергии фотона) от шести кинематических переменных. Экспериментальные точки, приведенные на рис. 2, представляют собой результат усреднения асимметрии *А* по некоторым шестимерным областям в кинематическом фазовом пространстве. Для прямого сравнения экспериментальных данных и теоретических предсказаний было проведено

92 XV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

статистическое моделирование реакции $\gamma d \rightarrow pp\pi^-$ методом Монте-Карло. В качестве независимых кинематических переменных нами были использованы энергия фотона E_{γ} , углы вылета двух протонов θ_1 , ϕ_1 , θ_2 , ϕ_2 и импульс одного из протонов. Энергетический спектр падающих фотонов, используемый при моделировании, является спектром Далица [2]. Из рис. 2 следует, что наибольшее расхождение между экспериментом и теорией имеется в зависимости асимметрии A от энергии фотона E_{γ} . В то же время поведение зависимости асимметрии A от инвариантной пион-нуклонной массы $M_{p\pi}$ находится в неплохом согласии с результатом моделирования. Учет взаимодействия в конечном состоянии (пион-нуклонное и нуклон-нуклонное перерассеяние) в целом приводит к улучшению согласия теории и эскперимента.

Рис 2. Зависимость асимметрии A от энергии фотона E_γ и от инвариантной пион-нуклонной массы M_{pπ}. Точки – данные эксперимента, штриховая кривая – результат моделирования реакции в импульсном приближении, сплошная кривая – результат моделирования реакции в импульсном приближении с учетом πN и NN-перерассеяния в конечном состоянии

В данном эксперименте имелось лишь четыре поляризационных состояния фотонного пучка и дейтронной мишени. Это количество поляризационных состояний позволило нам выделить только асимметрию A, которая представляет собой комбинацию трех поляризационных наблюдаемых T_{21} , Σ и T_{21}^{l} . Для выделения какой-либо двойной поляризационной наблюдаемой из набора T_{21}^{c} , T_{22}^{c} , T_{20}^{l} , T_{21}^{l} , T_{22}^{l} требуется не менее восьми поляризационных состояний фотонного пучка и дейтронной мишени. Это количество поляризационных состояний фотонного пучка и дейтронной мишени. Это количество поляризационных состояний в будущих двойных поляризационных экспериментах на электрон-позитронном накопителе ВЭПП-3.

Работа выполнена при поддержке гранта РФФИ №18-32-00013.

СПИСОК ЛИТЕРАТУРЫ

- Барков Л.М., Гаузштейн В.В., Дмитриев В.Ф. и др. // Известия ВУЗов. Физика. 2010. Т. 53. № 10/2. – С. 25–28.
- 2. Dalitz R.H. and Yennie D.R. // Phys. Rev. 1957. V.105. P.1598.