ИССЛЕДОВАНИЕ КОЛЕБАТЕЛЬНО-ВРАЩАТЕЛЬНОЙ СТРУКТУРЫ МОЛЕКУЛЫ H₂S В ПОЛОСЕ v₂: АНАЛИЗ ПОЛОЖЕНИЯ ЛИНИЙ, ИНТЕНСИВНОСТИ, ПОЛУШИРИНЫ

П.А. Глушков

Научный руководитель: О.Н. Улеников Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: pag14@tpu.ru

STUDY OF THE RO-VIBRATIONAL STRUCTURE OF H₂S MOLECULES IN THE BAND ν_2 : ANALYSIS OF LINE POSITIONS, INTENSITIES AND HALF-WIDTHS

A.G.Ziatkova

Scientific Supervisor: Prof., Dr. E.S. Bekhtereva Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: <u>pag14@tpu.ru</u>

Abstract. Spectroscopic study of hydrogen sulfide is important, both for replenishing databases used in astrophysics and for fundamental knowledge about the molecule: predictions of its physic-chemical properties. A study of the H_2S molecule in the v_2 region was carried out, analysis of line positions, intensities and half-width.

Цель работы: исследование количественных характеристик линий колебательно-вращательного спектра поглощения полосы v_2 и решение обратных спектроскопических задач для молекулы H₂S.

Задачи, поставленные для достижения цели:

1. Выполнить интерпретацию спектра высокого разрешения молекулы H_2S , полосы v_2 (диапазон $650 - 2200 \text{ см}^{-1}$);

2. Определить количественные значения коэффициентов поглощения для колебательновращательных переходов в полосе *v*₂.

3. Решить обратную спектроскопическую задачу и определить параметры эффективного гамильтониана для колебательного состояния (010).

4. Определить параметры эффективного дипольного момента для полосы v2.

Материалы и методы. Экспериментальные спектры молекулы H₂S были зарегистрированы в техническом университете Брауншвейга, Германия, на Фурье-спектрометре высокого разрешения Bruker-125 HR. Экспериментальные условия представлены в таблице 1.

Таблица 1

Экспериментальные условия регистрации спектров молекулы H₂S.

Спектр	Диапазон,	Давление,	Длина пути,	Разрешение,	Число	Температура,
	см ⁻¹	мбар	Μ	см ⁻¹	сканов	K
Ι	600-5000	2,0	4	0,003	1210	300
II	600-2200	1,5	163	0,0016	330	300
III	600-2200	4,5	163	0,003	1960	300

Методом, позволяющим выполнить интерпретацию спектра, является метод комбинационных разностей (GSCD). Основу метода составляет правило разностей частот переходов на возбужденный уровень колебательно-вращательного состояния. Полученные таким образом разности должны с

ХV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

точностью, определяющей положение линии в исследуемом спектре, совпадать с разностями соответствующих уровней в основном состоянии см. рис.2. Нами было использовано основное состояние для молекулы H₂S из работы [4]. Всего более 800 переходов были отнесены к полосе v_2 . Это позволило определить 182 колебательно-вращательные энергии состояния (010) со значениями $J^{\text{max.}}=25 K_a^{\text{max.}}=15$. Полученные уровни были вовлечены в обратную спектроскопическую задачу с использованием модели эффективного гамильтониана Уотсона (см., например, [1-3]).

Модель эффективного вращательного оператора. Объектом исследования в данной работе является спектр молекулы сероводорода H_2S , группа молекулярной симметрии которой изоморфна точечной группе C_{2V} . Это легкая молекула типа ассимметричного волчка, у которой три вращательные постоянные существенно различны, что позволяет использовать эффективный вращательный гамильтониан в A редукции и I^r представлении, которому соответствует система координатных осей на рис. 3, обозначенных штрихами.

Рис. 3. Молекула сероводорода H₂S в системе молекулярно-фиксированных осей. Оси, обозначенные штрихами, соответствуют I^r представлению

Эффективный гамильтониан Уотсона имеет вид:

$$H^{\nu\nu} = E^{\nu} + \left[A^{\nu} - \frac{1}{2}(B^{\nu} + C^{\nu})\right] J_{z}^{2} + \frac{1}{2}(B^{\nu} + C^{\nu})J^{2} + \frac{1}{2}(B^{\nu} + C^{\nu})J_{xy}^{2} - \Delta_{K}^{\nu}J_{z}^{4} - \Delta_{JK}^{\nu}J_{z}^{2}J^{2} - \Delta_{J}^{\nu}J^{2} - \Delta_{K}^{\nu}J_{z}^{2}J^{2} - \Delta_{JK}^{\nu}J_{z}^{2}J^{2} - \Delta_{JK}^{\nu}J_{z}$$

где J_{α} [$\alpha = x, y, z$]- компоненты углового момента в системе координат, связанной с молекулой; $A^{\nu}, B^{\nu}, C^{\nu}$ - эффективные вращательные постоянные: связанные с колебательными состояниями (ν); E – центр полосы: $\Delta_k^{\nu}, \Delta_{JK}^{\nu}, \Delta_J^{\nu}$ и т.д. - параметры центробежного искажения разного порядка малости.

Вариационная процедура, позволяющая определить спектроскопические параметры, приведенные в таблице 2, основана на методе наименьших квадратов.

В решение обратной спектроскопической задачи были вовлечены 182 уровня энергии. Число варьируемых параметров составило 21. Полученные параметры с 1*σ* -доверительными интервалами приведены в таблице 2. Параметры центробежного искажения более высоких порядков были фиксированы значениям из работы [1]. Среднеквадратичное воспроизведение составило *d_{rms}*=0,00019см⁻¹. 97

98 ХV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

Таблица 2

Значение,	Параметр	Значение,	Параметр	Значение,
CM ⁻¹		см ⁻¹		см ⁻¹
1182.576355(70)	$H_{K} \times 10^{5}$	0.2486(24)	$L_{\rm KJJJ} imes 10^8$	0.1490(22)
10.722067(17)	$H_{KJ} \times 10^5$	0.1051(17)	$L_J \times 10^8$	0.021621(25)
9.224454(11)	$H_{JK} \times 10^5$	-0.18331(66)	$\delta_{\rm K} \times 10^3$	-0.01761(19)
4.6688479(43)	$H_J \times 10^5$	0.037502(75)	$\delta_J \times 10^3$	0.347358(64)
0.45540(11)	$L_{K} \times 10^{8}$	-0.912(21)	$h_{K} \times 10^{6}$	2.1523(23)
-0.273286(57)	$L_{\rm KKKJ} \times 10^8$	1.300(24)	$h_{\scriptscriptstyle KJ} \times 10^6$	-0.6050(16)
0.075613(13)	$L_{KJ} \times 10^8$	-0.698(11)	$h_J \times 10^6$	0.18721(38)
	Значение, см ⁻¹ 1182.576355(70) 10.722067(17) 9.224454(11) 4.6688479(43) 0.45540(11) -0.273286(57) 0.075613(13)	Значение, CM^{-1} Параметр1182.576355(70) $H_K \times 10^5$ 10.722067(17) $H_{KJ} \times 10^5$ 9.224454(11) $H_{JK} \times 10^5$ 4.6688479(43) $H_J \times 10^5$ 0.45540(11) $L_K \times 10^8$ -0.273286(57) $L_{KKKJ} \times 10^8$ 0.075613(13) $L_{KJ} \times 10^8$	Значение, см ⁻¹ ПараметрЗначение, см ⁻¹ 1182.576355(70) $H_K \times 10^5$ 0.2486(24)10.722067(17) $H_{KJ} \times 10^5$ 0.1051(17)9.224454(11) $H_{JK} \times 10^5$ -0.18331(66)4.6688479(43) $H_J \times 10^5$ 0.037502(75)0.45540(11) $L_K \times 10^8$ -0.912(21)-0.273286(57) $L_{KKKJ} \times 10^8$ 1.300(24)0.075613(13) $L_{KJ} \times 10^8$ -0.698(11)	Значение, см ⁻¹ ПараметрЗначение, см ⁻¹ Параметр1182.576355(70) $H_K \times 10^5$ $0.2486(24)$ $L_{KJJJ} \times 10^8$ 10.722067(17) $H_{KJ} \times 10^5$ $0.1051(17)$ $L_J \times 10^8$ 9.224454(11) $H_{JK} \times 10^5$ $-0.18331(66)$ $\delta_K \times 10^3$ 4.6688479(43) $H_J \times 10^5$ $0.037502(75)$ $\delta_J \times 10^3$ 0.45540(11) $L_K \times 10^8$ $-0.912(21)$ $h_K \times 10^6$ $-0.273286(57)$ $L_{KKKJ} \times 10^8$ $1.300(24)$ $h_{KJ} \times 10^6$ 0.075613(13) $L_{KJ} \times 10^8$ $-0.698(11)$ $h_J \times 10^6$

Параметры эффективного гамильтониана состояния (010) молекулы H₂S

Исследование интенсивностей. Количественное определение коэффициентов поглощения выполнялось на основе использования Хартманн-Тран контура [5]. Модель эффективного оператора дипольного момента была взята из работы [6].

Таблица 3

Tupuntemp of ounomonoroeo momentul of the nonoeon (2) monter (non 1125) Bountury of usine period. (B)

r							
Параметр	Значение,	Параметр	Значение,				
	D		D				
μ ₁ x 10	0,32944(14)	$\mu_4 \ge 10^2$	0,3544(57)				
$\mu_2 \ge 10^4$	0,139(30)	$\mu_6 \ge 10^4$	0,344(48)				
~							

Среднеквадратичное отклонение для интенсивностей 150 линий при описании 4 параметрами составило 4,2%.

Заключение. В работе проведено исследование спектральных характеристик колебательновращательной полосы поглощения v₂ молекулы H₂S. Решены обратные спектроскопические задачи для энергетических характеристик и дипольного момента. Полученная информация может быть использована для пополнения спектроскопических баз данных.

СПИСОК ЛИТЕРАТУРЫ

- O.N. Ulenikov, A.B. Malikova, High Resolution Vibrational-Rotational Spectrum of H₂S in the Region of the v2 Fundamental Band // Journal of Molecular Spectroscopy. – 1996. – № 176. – C. 229–235.
- O.N. Ulenikov, A.-W. Liu, E.S. Bekhtereva, O.V. Gromova, L.-Y. Hao, and S.-M. Hu, On the study of high-resolution rovibrational spectrum of H₂S in the region of 7300-7900cm⁻¹// Journal of Molecular Spectroscopy. 2004. № 226. C. 57–70
- ^{3.} O.N. Ulenikov, G.A. Onopenko, M. Koivusaari, S. Alanko and R. Anttila, High Resolution Fourier Transform Spectrum of H₂S in the 3300-4080 cm⁻¹ Region// Journal of Molecular Spectroscopy. – 1996. – № 176. – C. 236–250
- 4. J.-M. Flaud, C.Camy-Peyret, J.W.C. Johns, The far-infrared spectrum of hydrogen sulfide. The (000) constants of H₂³²S, H₂³³S, and H₂³⁴S// Can. J. Phys. 1983. № 61. C. 1462–1473.
- 5. J. Tennyson, P. F. Bernath, et all,Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report)// Pure Appl. Chem.-2014. № 86(12). C.1931-1943.
- 6. J. M. Flaud, C.Camy-Peyret, Vibration-rotation intensities in H₂O-type molecules application to the $2v_2$ - v_2 , v_1 , and v_3 Bands of H₂¹⁶O // J. Molec. Spectrosc. 1975. N₂ 55. C. 278–310.