О ВЛИЯНИИ УСЛОВИЙ ОСАЖДЕНИЯ НА МЕХАНИЧЕСКИЕ И ОПТИЧЕСКИЕ СВОЙСТВА КРЕМНИЙ-УГЛЕРОДНЫХ ПЛЁНОК

А.С. Гренадёров

Научный руководитель: доцент, к.т.н., А.А. Соловьёв Институт сильноточной электроники СО РАН, Россия, г. Томск, пр. Академический 2/3, 634055 E-mail: <u>1711Sasha@mail.ru</u>

ABOUT INFLUENCE OF DEPOSITION CONDITIONS ON MECHANICAL AND OPTICAL PROPERTIES OF SILICON-CARBON FILMS

A.S. Grenadyorov

Scientific Supervisor: PhD, A.A. Soloviev IHCE SB RAS, Russia, Tomsk, 2/3 Akademichesky Avenue, 634055 E-mail: 1711Sasha@mail.ru

Abstract. The a-C:H:SiO_x films was deposited on glass substrates by plasma-assisted chemical vapor deposition combined with pulsed bipolar substrate bias from mixtures of argon and polyphenylmethylsiloxane vapor. Optical properties of a-C:H:SiO_x films were investigated and studied using the transmission spectrum $T(\lambda)$ in visible range 300–800 nm. It is shown that integrated transparency of a-C:H:SiO_x films in visible range from 380–780 nm is 70–89%, band gap is 2,3–2,6 eV, band tail width or Urbach energy is 547–718 meV depend on deposition conditions.

Введение. На сегодняшний день при создании оптических систем и ИК-оборудования требуется обеспечить одновременно защиту и просветление оптических элементов в требуемом диапазоне длин волн. Для решения этой задачи хорошо подходят алмазоподобные (a-C:H, DLC) покрытия, обладающие высокой твердостью и прозрачностью, высоким коэффициентом поглощения и химической стойкостью. Применение алмазоподобных углеродных покрытий для просветления оптики в ИК-диапазоне длин волн ограничивается высокими остаточными (внутренними) напряжениями (> 6 ГПа) в пленке [1-3], которые не позволяют сформировать плёнки толщиной более 1 мкм вследствие их разрушения. Для минимизации остаточных напряжений необходимо использовать отжиг при высокой температуре >400 °C, но не все подложки можно подвергать нагреву. В связи с этим требуется метод, обеспечивающий формирование оптических покрытий с низкими внутренними напряжениями при низкой температуре подложки.

Кремний-углеродные пленки, формируемые из плазмы несамостоятельного дугового разряда с накалённым катодом, обладают низкими внутренними напряжениями (менее 1 ГПа), не подвержены графитизации и при этом обладают всеми достоинствами DLC [4, 5].

Данная работа посвящена исследованию влияния рабочего давления аргона p_{Ar} и биполярного напряжения смещения U_{bias} на оптические и механические свойства полученных пленок.

Материалы и методы исследования. Кремний-углеродные пленки осаждались на подложки стекла толщиной 1,2 мм. Для осаждения кремний-углеродных пленок использовалась вакуумная установка с турбомолекулярной откачкой, оснащенная плазмогенератором с накалённым катодом,

ХV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

работающем в парах полифенилметилсилоксана (ПФМС). Подробнее метод осаждения и экспериментальное оборудование описаны в [6]. Подложки крепились на проводящий держатель образцов, расположенный на расстоянии 300 мм от плазмогенератора. Перед осаждением пленок производилась очистка подложек ионами аргона в течение 6 минут. В этом случае рабочее давление аргона составляло 2,8·10⁻¹ Па, а на подложку подавалось биполярное напряжение смещения с амплитудой отрицательного импульса 650 В, частотой следования импульсов 100 кГц, амплитудой положительного импульса – 15–20% от величины отрицательного импульса и длительностью положительного импульса 4 мкс.

Было проведено 2 серии экспериментов: 1) с различным p_{Ar} в вакуумной камере и 2) с различным U_{bias} , прикладываемым к подложке. Были обработаны и проанализированы результаты ИК-Фурье и Раман спектроскопии, атомно-силовой микроскопии и спектров пропускания пленок.

Результаты. Из таблицы 1 можно видеть, что как p_{Ar} , так и U_{bias} оказывают положительное влияние на повышение твердости и снижение скорости роста кремний-углеродных пленок. Прирост твердости, обусловлен повышением содержания sp³ гибридизированных атомов углерода в пленке, что подтверждается результатами Раман и ИК-Фурье спектроскопии.

Таблица 1

p _{Ar}	U _{bias}	Н	Ε	v
(Па)	(B)	(ГПа)	(ГПа)	(нм/мин)
$2,5\cdot 10^{-2}$		3,3	35,8	39,8
9·10 ⁻²		4,7	50,2	26,2
2·10 ⁻¹	-100	6,9	71,3	16,5
2,8·10 ⁻¹		9,8	87,7	14,4
	-100	3,3	35,8	39,8
2	-200	5,8	52,7	25,5
$2,5\cdot 10^{-2}$	-300	9,8	94,9	24
	-500	11,8	111,6	20,5
	-650	13,6	121,7	20

Влияние p_{Ar} и U_{bias} на механические свойства и скорость роста кремний-углеродных пленок

Рис. 1. Спектры пропускания кремний-углеродных пленок, полученных при различном p_{Ar} (слева) и различных U_{bias} (справа)

104 XV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

На рисунке 1 представлены спектры пропускания полученных кремний-углеродных пленок при различных p_{Ar} (слева) и различных U_{bias} (справа). Интегральное пропускание полученных пленок в видимом диапазоне длин волн 380 –780 нм составляет не менее 80%. Явной зависимости от p_{Ar} не наблюдается, а при увеличении U_{bias} происходит снижение пропускной способности с 87 до 69%.

Таблица 2

№ п.п.	p _{Ar} (Pa)	U _{bias} (V)	λ _{cut-off} (nm)	E _g (n=2) (eV)	E _U (meV)
1	$2,5 \cdot 10^{-2}$	-100	477	2,6	547
2	9·10 ⁻²	-100	512	2,4	585
3	2·10 ⁻¹	-100	488	2,5	608
4	2,8·10 ⁻¹	-100	504	2,4	634
5	$2,5 \cdot 10^{-2}$	-100	477	2,6	547
6	2,5.10-2	-200	496	2,5	585
7	$2,5 \cdot 10^{-2}$	-300	510	2,4	621
8	2,5.10-2	-650	537	2,3	730

Оптические характеристики кремний-углеродных пленок

Заключение. В процессе научных исследований было установлено, что увеличение рабочего давления аргона от 2.5 · 10⁻² до 2.8 · 10⁻¹ Па приводит к повышению твердости, модуля упругости, энергии Урбаха кремний-углеродных плёнок с 3.3 до 9.8 ГПа, с 35.8 до 87.7 ГПа, с 547 до 634 мэВ, соответственно, при толщине пленки 1000±200 нм.

Повышение амплитуды отрицательного импульса биполярного напряжения смещения в диапазоне 100÷650 В способствует повышению твердости, модуля упругости, критической длины волны, энергии Урбаха кремний-углеродных пленок с 3.3 до 13.6 ГПа, с 35.8 до 121.7 ГПа, с 476 до 536 нм, с 547 до 718 мэВ, соответственно, а оптическая ширина запрещенной зоны и интегральная прозрачность в диапазоне длин волн 380-780 нм снижается с 2.6 до 2.31 эВ и с 87 до 69%, соответственно при толщине пленки 1000±200 нм.

СПИСОК ЛИТЕРАТУРЫ

- Paul R., Bhattacharyya S., Bhar R., Pal A. Modulating of Residual Stress in Diamond-like Carbon Films with Incorporation of Nanocrystalline Gold // Applied Surface Science. – 2011. – V. 257. – P. 10451-10458.
- Yue W., Gao X., Wang C. et al Microstructure and Friction Reducing Performance of Sulfurized W Doped Diamond-like Carbon Film // Materials Letters. – 2012. – V. 73. – P. 202-205.
- Mangolini F., Rose F., Hilbert J. et al Thermally induced evolution of hydrogenated amorphous carbon // Applied Physics Letters. – 2013. – V. 103. – P. 161605-1 – 161605-5.
- Choi H. W., Moon M.-W., Kim T.-Y. et al The Thermal Annealing Effect on The Residual Stress and Mechanical Property in the Compressive Stressed DLC Film // Materials Science Forum. – 2005. – V. 475-479. – P. 3619-3622.
- Randeniya L.K., Bendavis A., Martin P.J. et al Molecular structure of SiOx-incorporated diamond-like carbon films; evidence for phase segregation // Diamond & Related Materials. – 2009. – V. 18. – P. 1167-1173.
- Гренадёров А.С., Оскомов К.В., Соловьёв А.А., Работкин С.В. Осаждение кремний-углеродных покрытий из плазмы несамостоятельного дугового разряда с накальным катодом // Журнал технической физики. – 2016. – Т. 86. – вып. 5. – С. 51-56.