СТРУКТУРА И СВОЙСТВА КЕРАМИЧЕСКИХ КОМПОЗИТОВ ZrO₂, МОДИФИЦИРОВАННЫХ РАЗЛИЧНЫМИ АРМИРУЮЩИМИ НАПОЛНИТЕЛЯМИ

<u>А.А. Леонов</u>, В.А. Цуканов, В.Д. Пайгин Научный руководитель: профессор, д.т.н., О.Л. Хасанов Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>laa91@tpu.ru</u>

STRUCTURE AND PROPERTIES OF ZrO₂ CERAMIC COMPOSITES, MODIFIED BY VARIOUS REINFORCED FILLERS

<u>A.A. Leonov</u>, V.A. Tsukanov, V.D. Paygin Scientific Supervisor: Prof., Dr. O.L. Khasanov Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: <u>laa91@tpu.ru</u>

Abstract. The effect of the addition of single wall carbon nanotubes and alumina nanofibers on the microstructural and mechanical performance of 3 mol% yttria stabilized zirconia have been investigated in the present study. Samples were obtained by spark plasma sintering.

Введение. В настоящее время спрос на инновационные и высокоэффективные керамические материалы неизменно растет. В то время как керамика имеет внутреннюю хрупкость и, соответственно, низкую устойчивость к повреждениям, армирование волокнами или углеродными нанотрубками керамической матрицы приводит к созданию конструкционных материалов с выдающимися характеристиками. Армирующие волокна/нанотрубки диссипируют энергию приложенной нагрузки при растрескивании, отслоении и вытягивании в процессе разрушения керамической матрицы, что улучшает прочность и трещиностойкость керамических композитов. Сочетание преимуществ керамики, таких как высокая твёрдость, высокая термостойкость и коррозионная стойкость с дополнительными характеристиками, получаемыми за счет армирования, такими как высокая устойчивость к разрушению и трещиностойкость, значительно расширяет область применения высокоэффективной керамики. В связи с этим, целью настоящей работы является исследование керамических композитов на основе ZrO₂, армированных одностенными углеродными нанотрубками (OYHT) и нановолокнами (HB) Al₂O₃.

Материалы и методы исследования. В качестве исходного сырья использовали нанопорошок частично стабилизированного иттрием диоксида циркония (TZ-3YS) коммерческой марки Tosoh (Япония). Армирующими наполнителями являлись ОУНТ Tuball и HB оксида алюминия Fibrall, предоставленные группой компаний OCSiAl (Новосибирск, Россия). Смешивание исходных компонентов производили в несколько этапов. В первую очередь нужно было отделить нанотрубки/нановолокна друг от друга. Для этого использовали ультразвуковое диспергирование (УЗванна, 110 Вт, 35 кГц) в среде этилового спирта в течение 30 мин. После этого к приготовленным суспензиям, порциями добавляли нанопорошок диоксида циркония и продолжали ультразвуковое диспергирование.

ХV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

композиционные суспензии ставили на магнитную мешалку и осуществляли перемешивание в течение 30 мин. Две готовые суспензии с матричной основой ZrO₂, содержащие 1 масс.% ОУНТ и 1 масс.% HB, высушивали 3 часа в сушильном шкафу. Синтез композитов ZrO₂/OУНТ и ZrO₂/HB производили электроимпульсным плазменным спеканием на установке SPS 515S (SPS Syntex, Япония) при следующих условиях: температура спекания 1500 °C, скорость нагрева 100 °C/мин, время изотермической выдержки при максимальной температуре 10 мин и давление прессования 40 МПа. Для сравнения спекалась неармированная керамика ZrO_2 при тех же условиях. Экспериментальная плотность спеченных образцов определялась геометрическим методом, затем рассчитывалась относительная плотность ρ_{0TH} , %. Измерения микротвердости H_V проводились на приборе ПМТ-3М (ЛОМО, Россия) с помощью алмазной пирамиды Виккерса при нагрузке 500 г. Трещиностойкость или критический коэффициент интенсивности напряжений K_{IC} определяли методом индентирования с помощью твердомера ТП-7Р-1 при нагрузке 5 кг и оценивали по методами Anstis и Niihara [1, 2]. Микроструктура образцов исследовалась на сканирующем электронном микроскопе JSM 7500FA (JEOL, Япония).

Результаты и их обсуждение. На рисунке 1 представлены СЭМ-изображения исходного воздушно-сухого нанопорошка и поперечных сколов спеченных образцов.

Рис. 1. СЭМ-изображения: а) нанопорошок ZrO₂, б-г) сколы неармированной керамики ZrO₂, композита с ОУНТ и композита с HB, соответственно.

Анализируя представленные изображения, определили средний размер частиц и зерен, а также построили распределения частиц/зерен по размерам. Размер зерен спеченных образцов практически одинаков (~ 0,23 мкм), это говорит о том, что армирующие добавки в меньшей степени влияют на эту характеристику. На сколах керамики ZrO₂ и композита с OУHT (рис.1б,в) наблюдается преимущественно межкристаллитное разрушение. Из рисунка 1в видно, что ОУНТ сохраняют свою структуру даже после высокотемпературного спекания. Нанотрубки хаотично ориентированы и довольно равномерно локализованы в объеме матрицы диоксида циркония, кроме того они имеют достаточно гибкую структуру, что позволяет им изгибаться и формировать мостиковые перемычки между частицами, опутывать их, образуя каркасную сетку. Для композита с НВ (рис. 1г) наблюдается разрушение смешанного характера (межкристаллитное и транскристаллитное), где в основном межкристаллитное разрушение AlgO₃

181

182 XV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

(~ 9 · 10⁻⁶ K⁻¹) ниже, чем у ZrO₂ (~ 11 · 10⁻⁶ K⁻¹), это означает, что растягивающее напряжение существует на границе раздела между Al₂O₃ и ZrO₂, что приводит к тенденции отклонения трещин вдоль границ зерен. В таблице 1 представлены значения физико-механических свойств исследуемых образцов в сопоставлении с подобными материалами. Из таблицы видно, что исследуемые спеченные образцы обладают высокой плотностью (~ 99 %). Микротвердость композита с ОУНТ ниже на 19 % по сравнению с неармированной керамикой, а для композита с НВ напротив, значение H_V повысилось на 4 %. Тем не менее, улучшение трещиностойкости наблюдается для обоих композитов: на 36 % для ZrO₂/OУНТ и на 24 % для ZrO₂/HB (значения K_{IC} по Anstis). Сравнивая свойства полученных образцов с аналогичными материалами видно, что значения H_V и K_{IC} превышают указанные величины, как для неармированной керамики ZrO₂, так и для композитов ZrO₂/OУНТ и ZrO₂/HB.

Таблица 1

	ZrO ₂	1% ОУНТ	1% HB	[3]		[4]	
				ZrO ₂	1% ОУНТ	ZrO ₂	1% HB
$d_{\rm cp}$, мкм	0,23	0,24	0,23	0,22	0,22	-	-
$ ho_{ m oth},\%$	99,30	98,73	99,84	100,00	100,00	99,00	98,00
<i>H</i> _V , ГПа	14,72	11,95	15,30	12,70	12,60	14,00	13,86
$K_{\rm IC}$, МПа·м ^{1/2}	*A 3,56	A 4,84	A 4,40	A 4,30	A 4,40		
	*N 5,84	N 6,97	N 6,79			N 5,73	N 6,25
* * * *	v						

Свойства полученных образцов в сопоставлении с другими работами.

*А и N – трещиностойкость по методам Anstis и Niihara, соответственно.

Выводы. Исследованы композиты $ZrO_2/OYHT$ и ZrO_2/HB , полученные электроимпульсным плазменным спеканием. Показано, что композит с OYHT обладает повышенной трещиностойкостью (4,84 МПа·м^{1/2}), но заниженной микротвердостью. Снижение H_V , как правило, связано с уменьшением композиционной теоретической плотности и с ослаблением межфазной связи, которое проявляется за счет переплетения зерен ZrO_2 нанотрубками, что приводит к уменьшениям площади прямого контакта и силы сцепления зерен между собой. Установлено, что композит ZrO_2/HB имеет улучшенные значения H_V и K_{IC} по сравнению с неармированной керамикой ZrO_2 , за счет известных механизмов упрочнения, таких как разрыв волокна, вытягивание волокна и соединение трещин в композите «мостиками».

Авторы выражают благодарность Егорову Юрию Петровичу, к.т.н., заведующему лабораторией Механических испытаний и металлографического анализа материалов (ТПУ) за помощь в проведении исследований трещиностойкости образцов.

СПИСОК ЛИТЕРАТУРЫ

- Anstis G.R., Chantikul P., Lawn B.R. A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements // J. Am. Ceram. Soc. – 1981. V. 64. P. 533–538.
- Niihara K. A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics // J. Mater. Sci. Lett. – 1983. – V. 2. – P. 221–223.
- Poyato R., Macías-Delgado J., García-Valenzuela A., Gallardo-López Á. Mechanical and electrical properties of low SWNT content 3YTZP composites // J. Eur. Ceram. Soc. – 2015. – V. 35. – P. 2351–2359.
- Hussainova I., Drozdova M., Pérez-Coll D., et al. Electroconductive composite of zirconia and hybrid graphene/alumina nanofibers // J. Eur. Ceram. Soc. – 2017. – V. 37. – P. 3713–3719.