КИЛЬВАТЕРНОЕ УСКОРЕНИЕ В МНОГОСЛОЙНОМ ВОЛНОВОДЕ С ИСПОЛЬЗОВАНИЕМ КОЛЬЦЕВОГО ПУЧКА

Н.А. Лесив, К.Р. Мухамедгалиев

Научный руководитель: доцент, к.ф.-м.н. А.М. Альтмарк Санкт-Петербургский государственный электротехнический университет «ЛЭТИ», Россия, г. Санкт-Петербург, ул. Профессора Попова, 5, 197022 E-mail: <u>nikita.lesiv@gmail.com</u>

WAKEFIELD ACCELERATION IN MULTILAYER DIELECTRIC WAVEGUIDE WITH USAGE OF RING BEAM

N.A. Lesiv, K.R. Mukhamedgaliyev

Scientific Supervisor: Assoc. Prof., PhD A.M. Altmark

St. Petersburg Electrotechnical University "LETI", Russia, St. Petersburg, Professor Popov str., 5, 197022 E-mail: nikita.lesiv@gmail.com

Abstract. In this paper, we simulated the process of wakefield acceleration of electron Gaussian bunch by a circular electron bunch. As a result, one of the prospective wakefield acceleration methods of electron bunches with an energy transformation coefficient of more than 2 is proposed.

Введение. В последнее десятилетие получили распространение кильватерные методы ускорения [1] заряженных частиц. Это связано с тем, что в кильватерных методах ускоряющий градиент поля выше, чем классических методах ускорения. Главный принцип кильватерного ускорения заключается в создании большого ускоряющего поля Ez при помощи пучка – драйвера и помещении в это поле ускоряемого пучка в нужной фазе волны. Целью данной работы является моделирования процесса кильватерного ускорения электронного сгустка кольцевым сгустком.

Метод исследования. В данном исследовании для моделирования процесса кильватерного ускорения электронного сгустка кольцевым сгустком используется метод макрочастиц [2].

Метод макрочастиц – метод моделирования динамики заряженных частиц. Сгусток заряженных частиц разбивается на макрочастицы. Каждой макрочастице присваивается заряд равный заряду сгустка, отнесенный к количеству макрочастиц в сгустке, а масса – равной массе электрона. Поле, создаваемое сгустком, вычисляется как сумма полей всех макрочастиц.

Постановка задачи. В диэлектрический волновод (рис. 1), состоящий из двух коаксиальных цилиндрических диэлектрических трубок (желтый цвет), влетают два электронных сгустка: кольцевой (синий) и гауссов сгусток (красный) (сначала влетает кольцевой сгусток, за ним - гауссов). При определенном подборе параметров волновода и расстояния между сгустками возможна передача энергии от кольцевого сгустка к гауссову (ускоряемому). Такой процесс называется ускорением гауссова сгустка. Ускорение гауссова сгустка происходит из-за того, что кольцевой сгусток возбуждает в диэлектрическом волноводе излучение Вавилова-Черенкова, в поле которого происходит увеличение энергии ускоряемого сгустка. Кольцевой сгусток обладает малой энергией и в дополнении к этому еще имеет радиальное смещение относительно оси волновода. Это обстоятельство определяет поперечную неустойчивость кольцевого пучка, обусловленное возбуждением несимметричных НЕМ мод [3].

184 XV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

Рис. 1. Диэлектрический волновод

Результаты. Моделирование было проведено со следующими параметрами сгустков и волновода:

Таблица 1

Параметры кольцевого	Значение	Параметры гауссова	Значение
сгустка	параметров	сгустка	параметров
Заряд	100 нКл	Заряд	0,1 нКл
Продольная длина	0,4 см	Продольная длина	0,1 см
Радиус кольца	0,8 см	Поперечная длина	0,01 см
Энергия	15 МэВ	Энергия	150 МэВ
Число макрочастиц	400	Число макрочастиц	400
Радиальное смещение	0.03 см		

Параметры сгустков

Таблица 2

Параметры волновода Параметры волновода Значение параметров а 0,2 см b 0,6 см c 1 см d 1,4 см Диэлектрическая 400 проницаемость 400

начальное расстояние между кольцевым и гауссовым сгустками – 2,4 см.

Результаты моделирования представлены на рис. 2-4.

Россия, Томск, 24-27 апреля 2018 г.

ХУ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

09

0.8

0.7

06 0.5

0.4 0.3 0.2 0.1

0

-0.1 -0.2 -0.3

-0.8

-25

-1.5

Рис. 2. Поперечное сечение волновода и системѕ сгустков в конце моделирования

-0.5

Z cm

٠.

0'5

185

Рис. 4. Поле, создаваемое кольцевым пучком в вакуумной полости и вакуумном канале (розовая линия – поле внутри центрального вакуумного канала, красная линия – поле внутри вакуумного слоя где летит кольцевой сгусток)

Из рис. 4 видно, что коэффициент трансформации (коэффициент передачи энергии от ведущего сгустка к ускоряемому) высокий (по сравнению с классической схемой, где он равен 2 [1]). Рис.2 соответствует окончанию вычислений, так как макрочастицы кольцевого сгустка коснулись стенок волновода. Исходя из этого условия, мы получили максимальную длину пролета – 30 см. Отсюда можно получить энергию, которую приобретает ускоряемый сгусток путем умножения его заряда на максимальную длину и значение ускоряющего кильватерного поля

Заключение. В данной работе было произведено моделирование процесса кильватерного ускорения электронного сгустка кольцевым сгустком. Предложенная схема кильватерного ускорения позволяет получать достаточно высокий коэффициент трансформации [4] (больше 2). Работа выполнена при поддержке Министерства образования и науки Российской Федерации (проект 3.6522.2017).

СПИСОК ЛИТЕРАТУРЫ

- 1. Rosenzweig J. B., Schoessow P., Cole B., Gai W. et al. 1989 Phys. Rev. A 39, 1586
- Sheinman I., Kanareykin A., Sotnikov G., RUPAC, MOPPA010, 2012, pp. 266-268. 2.
- Altmark A M and Kanareykin A D. J. Phys.: Conf. Ser. 357 012001 3.
- Sotnikov G.V., Marshall T.C., Hirshfield J.L., and Shchelkunov S.V. 2010 Proc. AAC'10, AIP Conference 4. Proceedings, 1299, NY, 342