ИССЛЕДОВАНИЕ СОВМЕСТИМОСТИ МЕЖДУ ПОЛИМЕРНЫМ МОЛЕКУЛЯРНЫМ КЛУБКОМ И ПОРОВЫМ КАНАЛОМ ПЛАСТА ДЛЯ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ

Нажису¹, Лу Сянго², В.И. Ерофеев¹

Научные руководители: профессор В.И. Ерофеев¹, профессор Лу Сянго²

¹Национальный исследовательский Томский политехнический университет, г. Томск, Россия

²Ключевая лаборатория Министерства образования по увеличению нефтеотдачи пластов,

Северо-восточный нефтяной университет, г. Дацин, Китай

Химический метод увеличения нефтеотдачи пластов является одним из важных направлений методов увеличения нефтеотдачи пластов (МУН). Они используются на основе заводнения и увеличивают нефтеотдачу пластов с 30% до 56% из добывавших запасов нефти. Дополнительный объем добычи нефти за счет использования химических методов увеличения нефтеотдачи пластов составляет 26% из всех объемов добычи нефти через МУН [1-2].

Полимерное заводнение является самым широко применяемым химическим методом увеличения нефтеотдачи пластов. Полимерное заводнение позволяет увеличить нефтеотдачу пластов с 5% до 30%. Для выбора типа полимера и сочетания слага вытесняющего агента существующие технологии не могут полностью адаптироваться к сложным геологическим условиям пластов, т.е. существуют технические проблемы, которые необходимо решить и улучшить.

Большое количество экспериментов движения потока в керне и результаты экспериментов показали, что только полимерные молекулярные клубки и поровые каналы пласта являются совместимыми и вытесняющие агенты могут протекать через поровые каналы. Когда водорастворимые полимерные молекулы протекают через пористые среды, они подвергаются естественному выбору размера поровых каналов. Для того чтобы вытесняющую систему успешно закачать в нефтяной пласт и получить максимальный эффект вытеснения, необходимо точно определить размер молекулярного клубка вытесняющего агента.

В данной работе исследованы влияние концентрации полимерного раствора и молекулярной массы на размер полимерного молекулярного клубка, и совместимость между молекулярным клубком и поровым каналом пласта [3-5]. Полимеры, которые исследованы в данной работе представляют собой сухой порошок частично гидролизованного полиакриламида с разной молекулярной массой: 400×10^4 , 800×10^4 , 1200×10^4 , 1900×10^4 , 2500×10^4 , эффективное содержание составляется 88%, 88%, 90,3%, 90% и 90,1% соответственно. Вода, используемая в эксперименте является технической водой с месторождения Дацин в Китае. Керны, использованные в эксперименте, являются искусственными кернами и геометрический размер составляет $\phi 2.5 \times 10$ сm, газопроницаемость изменяется от 25×10^{-3} до 750×10^{-3} мм². Размер полимерного молекулярного клубка Dh был измерен на установке Brookhaven BI-200SM (широкоугольная динамическая / статическая система рассеяния света (Brookhaven Instruments Cop., CIIIA).

Характеристики потока полимерного раствора были испытаны с использованием установки для проведения фильтрационных экспериментов. Экспериментальная фильтрационная установка состояла в основном из насоса, датчика давления, держателя керна, ручного насоса для создания горного давления, промежуточного контейнера и др. За исключением насоса и ручного насоса, все остальное было помещено в термостате с температурой 45 °C (температура пластового условия). Фильтрационный эксперимент проводился при температуре 45 °C.

Йспользуя пресную воду готовили маточный раствор полимера с массовой концентрацией 1000 мг/л и затем разводили до массовых концентраций 50 мг/л, 100 мг/л, 150 мг/л и 300 мг/л с использованием технической воды с месторождения Дацин. Результаты измерения размера полимерного молекулярного клубка Dh представлены в табл. 1. Из табл. 1 видно, что при тех же условиях массовой концентрации раствора размер полимерного молекулярного клубка Dh увеличивается с увеличением относительной молекулярной массы. Это связанно с тем, что с увеличением относительной молекулярной массы, молекулярная цепь полимера растет, содержит более заряженные группы, создается более сильная общая сила электростатического отталкивания в молекулярных катушках и за счет этого молекулярный гидродинамический размер полимера увеличивается.

Таблица 1 Результаты измерения размера полимерного молекулярного клубка Dh (нм)

	Концентрация раствора (мг/л)					
Полимер	50	100	150	300		
400×10 ⁴	149.1	173.6	146.3	182.5		
800×10 ⁴	165.6	191.6	159.7	202.4		
1200×10 ⁴	178.2	209.6	169.3	242.7		
1900×10 ⁴	206.2	223.1	177.4	246.7		
2500×10 ⁴	228.6	260.7	205.4	255.5		

Массовая концентрация полимерного раствора тоже влияет на размер полимерного молекулярного клубка Dh. С увеличением концентрации размер полимерного молекулярного клубка Dh сначала увеличивается, затем уменьшается, а затем снова увеличивается. Когда концентрация раствора низкая, с ростом концентрации раствора количество полимерного молекулярного клубка в единице объема увеличивается, отрицательный заряд у карбоксильной группы увеличивается, защитный эффект катиона в растворе относительно ослаблен, повышается сила электростатического отталкивания между ветвями, увеличивается степень протяженности полимерных цепей, поэтому размер полимерного молекулярного клубка Dh увеличивается. Когда концентрация полимера увеличивается до 150 мг / л, концентрация воды (свободного растворителя) в растворе уменьшается, толщина гидратного слоя на поверхности полимерной цепи начинает снижаться, вызывает уплотнение клубок и приводит к уменьшению размера полимерного молекулярного клубка Dh. Когда концентрация полимера увеличивается до 300 мг / л. происходит физическое запутывание между изолированными цепями в растворе и размер полимерного молекулярного клубка Dh увеличивается. Обычно минимальная проницаемость керна, который не вызывает пробки называется пределом проницаемости. Пределы проницаемости различных кернов могут быть определены с помощью фильтрационных экспериментов. С изменением давления закачки определяются пределы проницаемости кернов и возможно образование пробок. В табл. 2 представлены пределы проницаемости полимерных растворов разной концентрации, которые были получены в экспериментах на фильтрационной установке.

Результаты фильтрационных экспериментов

Таблица 2

Полимеры	Массовая	Вязкость	Предел	Коэффициент	Коэффициент
	концентрация	(мПа· c)	проницаемости	сопротивления	остаточного
	(мг/л)		(10^{-3}MKM^2)		сопротивления
	600	2.3	30	4.8	3.1
	800	2.5	35	5.5	3.4
400×10 ⁴	1000	3.0	40	6.8	4.1
	1200	3.9	55	9.1	5.2
	1400	4.6	70	11.6	6.5
800×10 ⁴	600	3.5	40	6.0	4.1
	800	5.2	50	7.9	5.3
	1000	8.1	60	9.0	5.8
	1200	9.2	85	12.4	7.7
	1400	10.1	105	16.4	9.5
1200×10 ⁴	600	4.5	55	8.0	5.7
	800	7.1	65	10.5	7.2
	1000	11.5	80	12.0	7.6
	1200	12.8	105	16.3	9.8
	1400	17.3	135	19.5	11.1
1900×10 ⁴	600	5.3	70	10.8	7.1
	800	9.5	80	12.5	7.8
	1000	13.7	95	14.8	8.8
	1200	16.3	125	19.0	10.5
	1400	21.2	160	24.5	11.9
2500×10 ⁴	600	6.8	80	12.6	8.9
	800	10.9	95	15.5	10.2
	1000	18.0	110	19.3	11.4
	1200	20.8	145	22.8	12.0
	1400	28.4	180	26.1	13.4

Из табл. 2 видно, что с увеличением концентрации раствора коэффициент сопротивления и коэффициент остаточного сопротивления увеличиваются. Относительная молекулярная масса и проницаемость породы, т.е. коэффициент сопротивления и коэффициент остаточного сопротивления влияют на текучесть полимерного раствора. С увеличением относительной молекулярной массой коэффициент сопротивления и коэффициент остаточного сопротивления увеличиваются и наоборот с уменьшением проницаемости породы, коэффициент сопротивления и коэффициент остаточного сопротивления увеличиваются. В связи с этим, когда проницаемость породы низкая, нужно выбрать относительно низкомолекулярный полимер, чтобы избежать блокировки пор полимерного раствора.

Литература

- Leng Jun, Pan Yi, LI Dong-sheng, Li Xiao-ou. Application of chemical flooding technology// Contemporary Chemical Industry. – 2014. - Aug. - N8. – P. 1495-1501.
- 2. Нажису́, Ерофеев В.И. Исследование и применение комплексной технологии заводнения для повышения нефтеотдачи пластов.// Успехи современного естествознания. 2017. № 10. С. 96–100.
- 3. ZHENG J. et al. Blockage mechanism and blockage reducer for polymer-injection well [J] //Petroleum Exploration and Development. 2004. T. 6. C. 108À111.
- 4. Zhu H. et al. Compatibility between polymer molecular size and pore throat in reservoirs //Petroleum Exploration and Development. 2006. T. 33. № 5. C. 609.

5. Wang X. Y., Lu X. G., Jiang W. D. Influence of cations, anions and surfactants on molecular coil dimensions of partially hydrolyzed polyacrylaimde //Acta Polym. Sin. – 2009. – T. 12. – C. 1259-1264.

ЗАЩИТНЫЕ ПОКРЫТИЯ НА ОСНОВЕ НЕФТЕПОЛИМЕРНЫХ СМОЛ Нгуен Ван Тхань, М. В. Старовойт, Л. Р. Хаялиева

Научный руководитель – к.х.н., доцент, Л. И. Бондалетова

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Одним из основных процессов переработки углеводородного сырья является пиролиз, в результате которого помимо основных непредельных газообразных мономеров образуется до 20 % жидких побочных продуктов. Рациональным использованием жидких продуктов является синтез нефтеполимерных смол (НПС), что способствует углублению переработки нефти [1].

Для улучшения физико-химических свойств, а так же для расширения областей применения НПС проводят их модификацию различными агентами — озоном, пероксидом водорода, малеиновой кислотой и др. [2].

Одним из широко применяемых материалов для получения защитных покрытий является битум. Распространенным методом модификации битумов является добавление резиновой крошки и атактического полипропилена. Технология подобной модификации требует нагрева продукта до температуры выше $180\,^{\circ}$ С, что влечет за собой как дополнительное окисление (старение) битума и ухудшение ряда его свойств, так и разрушение структуры каучука. Поэтому готовый продукт имеет повышенную температуру размягчения и частично теряет эластичность. Другой распространенный метод модификации — это добавление нефтеполимерных смол: ароматических, алифатических, кумароноинденовых, смол на основе широкой фракции C_5 — C_9 , а также их гидрогенизированных модификаций. Нефтеполимерные смолы при растворении в битумных композициях позволяют повысить поверхностную активность композиций [3].

Целью данной работы является получение битумно-смоляных композиций на осново модифицированных нитрованием нефтеполимерных смол на основе фракции С9.

В качестве объекта исследования выбран образец нефтеполимерной смолы, полученный инициированной полимеризацией (ООО «Омск-полимер») – НПС_{С9 ИН}.

Модификацию осуществляли по стандартной методике, учитывая, что исследуемая нефтеполимерная смола на 75 % состоит из стирольных звеньев, и нитрованию подвергается каждое третье звено полимерной цепи [4]. Нитрование 50 % раствора смолы в хлороформе при температуре 70 °C в течение 3 часов выполняли двумя способами. В первом случае в качестве нитрующего агента использовали азотную кислоту; при этом получали смолу, обозначаемую N-HПС. Во втором случае нитрующим агентом являлась смесь концентрированных азотной и серной кислот; полученный продукт обозначили NS-HПС. При использовании нитрующей смеси (2 случай) механизм процесса можно представить следующими уравнениями [4]:

$$HO-NO_2 + H_2SO_4 \rightarrow H_2O^+-NO_2 + HSO_4$$
 $H_2O^+-NO_2 + H_2SO_4 \rightarrow H_3O^+ + HSO_4 + NO_2^+$
 $+ NO_2^+ \rightarrow NO_2 \rightarrow NO_2$
 $+ NO_2^+ \rightarrow NO_2$

Реакция нитрования олефиновых углеводородов протекает по радикально-цепному механизму. Алканы реагируют с 10 % раствором азотной кислоты при температуре 140 °C и небольшом давлении [4]. При одновременном введении воздуха кислород окисляет нитронитрит в соответствуюий нитронитрат.

$$N_2O_4 \longrightarrow 2NO_2$$
 $RCH = CH_2 + \cdot NO_2 \longrightarrow RCHCH_2NO_2$ NO_2 NO_2 $RCHCH_2NO_2 + \cdot NO_2$ $RCHCH_2NO_2$ $RCHCH_2NO_2$

Исходные (НПС $_{C9_ИH}$) и модифицированные (N-НПС $_{C9_ИH}$, NS-НПС $_{C9_ИH}$) смолы, свойства которых представлены в таблице 1, были использованы для получения покрытий методом полива на металлические подложки.