Секция 13

СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ПОДГОТОВКИ И ПЕРЕРАБОТКИ ПРИРОДНЫХ РЕСУРСОВ

Подсекция 2 – Химические технологии подготовки и переработки горючих ископаемых

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ СТАБИЛЬНОГО ГАЗОВОГО КОНДЕНСАТА В КАЧЕСТВЕ КОМПОНЕНТА АВТОМОБИЛЬНЫХ БЕНЗИНОВ А.А. Алтынов, И.А. Богданов, М.В. Киргина

Научный руководитель – доцент М.В. Киргина

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Газовые конденсаты являются побочным продуктом, получаемым в процессе добычи природного и попутного нефтяного газа. Наиболее распространённое направление переработки газового конденсата нефтехимическое. Нефтехимическая переработка конденсата сводится к получению ароматических углеводородов, олефинов и других мономеров, используемых для производства пластических масс, синтетических каучуков, волокон и смол.

Ежегодное увеличение объемов потребления светлых нефтепродуктов вынуждает искать новые пути их получения, немаловажным также является то, что ежегодно ужесточаются требования по утилизации продуктов, получаемых в процессе добычи нефти (например, газового конденсата с нефтяных месторождений).

Одним из способов решения описанных выше проблем является использование газового конденсата в качестве компонента товарных бензинов.

Для оценки возможности применения газового конденсата в качестве компонента для производства бензина были проведены лабораторные исследование его состава и физико-химических свойств.

В качестве объекта исследования были выбраны образцы стабильного промыслового газового конденсата, отобранные с одного из Западно-Сибирских месторождений. Затем экспериментально были определены такие свойства газового конденсата как: плотность, фракционный состав, содержание серы. Помимо этого, был проведен хроматографический анализ одного из образцов газового конденсата.

Плотность образцов определялась с помощью пикнометра в соответствии с ГОСТ 3900-85 «Нефть и нефтепродукты. Методы определения плотности» [4]. Результаты представлены в Таблице 1.

Результаты определения плотности конденсата

Номер образца	1	2	3
Плотность при 20 °C, г/см ³	0,66555	0,65727	0,71908

Из результатов, представленных в Таблице 1, следует, что плотность исследуемых образцов близка к плотности таких распространенных бензиновых компонентов как алкилат и газовый бензин.

Таблица 2

Таблица 1

	• '	образцов газового конденсата	T
Объем, %	Образец 1	Образец 2	Образец 3
		T, °C	
$T_{ ext{h.k.}}$	28,4	30,1	27,6
5	36,5	37,5	33,5
10	39,3	40,4	35,9
15	41,4	42,8	38,0
20	44,0	45,5	40,5
30	49,0	51,0	45,6
40	54,6	56,8	51,2
50	60,9	63,2	57,1
60	68,0	70,6	64,4
70	76,7	79,4	73,1
80	87,1	90,9	84,5
85	94,4	99,1	92,1
90	105,2	112,9	103,4
95	131,9	_	133,3
Тк.к.	138,5	149,6	139,9

ПРОБЛЕМЫ ГЕОЛОГИИ И ОСВОЕНИЯ НЕДР

Определение фракционного состава было проведено с использованием автоматического аппарата для определения фракционного состава нефтепродуктов OptiDistTM. Измерения фракционного состава проводилось в соответствии с ГОСТ 2177-99 «Нефтепродукты. Методы определения фракционного состава» [1].

Данные по фракционному составу исследуемых образцов приведены в Таблице 2.

Согласно данным, представленным в Таблице 2, фракционный состав исследуемого газового конденсата имеет значения близкие к фракционному составу прямогонных бензинов, традиционно вовлекаемых в производство автомобильного бензина.

Определение серы в исследуемых образцах было проведено в соответствии с ГОСТ Р 51947-2002 «Нефть и нефтепродукты. Определение серы методом энергодисперсионной рентгенофлуоресцентной спектрометрии» [2]. Результаты определения серы в стабильном газовом конденсате отражены в Таблице 3.

Таблица 3

Таблица 4

Собержание серы в образцах стабильного газового конбенсата				
Номер образца	1	2	3	
Содержание серы, мг/кг	33	28	30	

Из данных приведенных в Таблице 3 видно, что содержание серы в стабильном газовом конденсате в среднем составляет 30 мг/кг. Результаты определения содержания серы в образцах стабильного газового конденсата свидетельствуют о возможности применения его в качестве компонента для производства бензинов 4 экологического класса, а при включении в рецептуру производства бензинов других компонентов с минимальным содержанием серы (риформат, ароматические углеводороды, изомеризат) возможно производство бензина пятого экологического класса (предельное содержание серы согласно [3] для 4 класса — 50 мг/кг, для 5 класса — 10 мг/кг соответственно).

Хроматографический анализ одного из образцов (№1) был проведен с целью определения индивидуального углеводородного состава стабильного газового конденсата и последующего расчета октанового числа. Данные по групповому составу образца приведены в Таблице 4.

Групповой углеводородный состав стабильного газового конденсата (образеи №1)

1 рупповой углевооорооный состив стиоильного гизового коноенсити (ооризец 121)				
Группа углеводородов	Содержание, % об.			
н-парафины	46,30			
и-парафины	37,60			
нафтены	15,26			
олефины	0,14			
ароматические углеволороды	0.59			

Компоненты, содержание которых в стабильном газовом конденсате значительно: пентан -19,5% об., изо-пентан -15,6% об., бутан -12,6% об., гексан -10% об., 2-метилпентан -7,6% об., метилциклопентан -4,9% об.

Стоит отметить, что содержание бензола составляет 0,11 % об., что удовлетворяет требованиям, предъявляемым к бензинам 5-го экологического класса (не более 1 % об.).

Так же для образца №1 было рассчитано октановое число. Октановое число было рассчитано с помощью программного комплекса «Сотроинding», разработанного на кафедре Химической технологии топлива и химической кибернетики Томского политехнического университета [5]. Расчетное октановое число газового конденсата по исследовательскому методу составило 69,4 пунктов, по моторному — 66,6 пунктов соответственно. Осуществленные расчеты показывают, что октановое число стабильного газового конденсата превышает октановое число прямогонного бензина (55-60 пунктов).

Проведенные исследования позволяют сделать вывод о возможности применения газового конденсата получаемого на промыслах в качестве одного из компонентов автомобильного бензина.

Литература

- ГОСТ 2177-99 «Нефтепродукты. Методы определения фракционного состава» [Электронный ресурс]. Электрон. дан. URL:http://vsegost.com, свободный. – Дата обращения: 10.01.2018 г.
- 2. ГОСТ 32139-2013 «Нефть и нефтепродукты. Определение содержания серы методом энергодисперсионной рентгенофлуоресцентной спектрометрии» [Электронный ресурс]. Электрон. дан. URL:http://vsegost.com, свободный. Дата обращения: 10.01.2018 г.
- 3. ГОСТ 32513-2013 Топлива моторные. Бензин неэтилированный. Технические условия. Введ. 01.01.2015. М.: Стандартинформ, 2014. 16 с.
- 4. ГОСТ 3900-85 «Нефть и нефтепродукты. Методы определения плотности» [Электронный ресурс]. Электрон. дан. URL:http://vsegost.com, свободный. Дата обращения: 10.01.2018 г.
- 5. Киргина М.В., Иванчина Э.Д., Долганов И.М., Чеканцев Н.В., Кравцов А.В., Фан Ф. Компьютерная программа для оптимизации процесса компаундирования высокооктановых бензинов // Химия и технология топлив и масел. 2014. № 1. С. 12-18.