ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТИПА ИЗОЛЯЦИИ НА ОБРАЗОВАНИЕ АСПО В ПОДВОДНОМ ТРУБОПРОВОДЕ НА НЕФТЯНОМ МЕСТОРОЖДЕНИИ «ЗОЛОТОЙ ТУНЕЦ» Нгуен Бао Тоан

Научный руководитель - доцент Л.В. Шишмина

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Образование и осаждение АСПО в результате потери тепла флюидом при транспортировке нефти представляет сложное и неблагоприятное явление. Его следствия, такие как уменьшение внутреннего диаметра и полная блокировка трубопроводов, могут привести к колоссальным финансовым потерям. Применение изоляции трубопровода является эффективным методом для снижения количества отложений в трубопроводах во Вьетнаме.

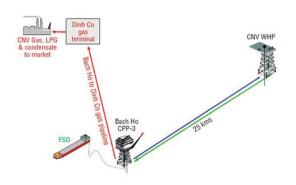


Рис. 1 Общая схема транспортировки углеводородов CNV-CPP3-ГПЗ «Зинь Co»-FSO

Цель статьи — определение вклада каждого слоя изоляции в общий коэффициент теплопередачи U путем анализа коэффициентов тепловых сопротивлений $R_{\rm изо}$.

Объект исследования: трубопровод, соединяющий устьевую платформу месторождения «Золотой Тунец» (WHP) с центральной платформой обработки флюида на месторождении «Белый Тигр» (СРР-3) во Вьетнаме (рис. 1). В работе использован программный комплекс OLGA, а также выполнен расчет в программе Excel.

Нефть месторождения «Золотой Тунец» имеет высокую концентрацию парафина (18.1 %) и температуру начала кристаллизации (51.8 °C) [1]. Эти параметры определяют высокую степень осаждения АСПО в трубопроводе. Свойства флюида показаны в таблице 1:

Таблица 1

Свойства добываемой нефти

Плотность (15°C), кг/м ³	807,1
Температура помутнения, °С	30
Содержание парафина, %	18.1
WAT, °C	51.8

Средняя температура морской воды составляет 18 °C, длина трубопровода равна 25 км [1]. При таких условиях возможно снижение температуры транспортируемого флюида до температуры начала кристаллизации парафинов. Параметры трубопровода месторождения «Золотой Тунец» показаны на следующей таблице:

Таблица 2

Данные о стальном трубопроводе «Золотой Тунец»–Белый Тигр						
Пинио	Диаметр, мм		Толщина стенки,	III an ay an ama ama ana		
Длина, м	внутренний	внешний	MM	Шероховатость, мм		
24921	232.9	273.1	20.1	0.0457		

Данный трубопровод имеет несколько слоев покрытия с их конкретными функциями (рис. 2) [2]:

- 1) сталь: проточный проводник с высоким давлением,
- 2) fusion bond epoxy (FBE): для защиты трубопровода от внешней коррозии,
- 3) полипропиленовый клей (PP Adhesive): слой геля, соединяющий два соседних слоя,
- 4) твердый полипропилен (PP Solid): для поддерживания слоя пенополиуретана,
- 5) полиуретановая пена (PU Foam): теплоизоляционный слой и 6) бетонное покрытие (CWC): для придания стабильности и защиты всего трубопровода. Их характеристки (теплопроводность, теплоемкость, плотность) взяты из статьи [2].

Тепловые потери при транспортировке нефти. Из формулы Шухова следует, что изменение температуры флюида по длине трубопровода связано со значением общего коэффициента теплопередачи

Рис. 2 Схема трубопровода с многослойным покрытием

U. Задача изоляции трубопровода заключается в контроле значения U так, чтобы температура транспортируемого флюида всегда оставалась выше, чем температура начала кристаллизациии парафинов.

Формула расчета общего коэффициента теплопередачи для многослойных изоляционных покрытий [3]:

$$U = \left[R_i + (R_{uso1} + R_{uso2} + \dots + R_{uson}) + \frac{r_i}{r_o} R_o \right]^{-1} = \left[\frac{1}{h_i} + \left(\frac{r_i \ln(r_i / r_i)}{k_1} + \frac{r_i \ln(r_2 / r_1)}{k_2} + \dots + \frac{r_i \ln(r_n / r_{n-1})}{k_n} \right) + \frac{r_i}{r_o} \frac{1}{h_o} \right]^{-1}$$
(1)

где: R_i , R_o – внутреннее и внешнее сопротивление теплопередачи, R_{ugo} $_i$ – тепловые сопротивления i-слоя, k_i – теплопроводность слоя i; h_i , h_o , — коэффициенты теплопередачи флюида и морской воды к стенке; r_i — радиус соответствующего слоя изоляции, r_o — внешний радиус трубопровода.

Таблица 3

Расчет коэффициентов тепловых сопротивлений R_{uso} трубопровода и покрытий

The tent hesp purpose in the interest conformation and a property of the interest in the inter						
	Толщина, мм	$d_{\rm i}$, M	d_0 , м	<i>r</i> i, M	<i>r</i> ₀ , M	$R_{\rm H30 i}$, (м ² .С)/W
Steel	20.1	0.2329	0.2731	0.11650	0.13655	0.000412
FBE	0.15	0.2731	0.2734	0.13655	0.13670	0.000426
PP Adhisive	0.35	0.2734	0.2741	0.13670	0.13705	0.001354
PP Solid	3.5	0.2741	0.2811	0.13705	0.14055	0.013659
PU Foam	25.21	0.2811	0.3315	0.14055	0.16576	0.480291
PP Solid	4	0.3315	0.3395	0.16576	0.16976	0.012915
CWC	48.22	0.3395	0.4360	0.16976	0.21798	0.014557

С помощью формулы (1) получили значения тепловых сопротивлений для пяти слоев $R_{\rm изо}$. **PU Foam** исполняет целевую функцию в конструкции покрытий ($R_{\rm PUFoam}$ =0.48). Отметим ещё, что это значение зависит от толщины покрытия: чем толще слой покрытия, тем больше значение $R_{\rm изo}$. Например: CWC имеет высокую теплопроводность, но в этом случае его толщина составляет 48,22 мм, поэтому $R_{\rm CWC}$ достаточно большое ($R_{\rm CWC}$ =0.0146).

то Сравнение значения общего коэффициента теплопередачи U, рассчитанные в Excel и OLGA

Конструкция трубопровода	$U_{\text{excel}}, W/(M^2.^{\circ}C)$	$U_{\text{OLGA}}, \text{W/(M}^2.^{\circ}\text{C})$
Без покрытия (Steel + CWC)	55.49	55.49
С покрытием	1.91	1.91

По обоим способам расчета значения общего коэффициента теплопередачи практически одинаковы и составляют 55.5 (без покрытия) и 1,91 (с покрытием), W/(м².оС). Это означает, что в программе OLGA для расчета использована формула (1). Далее программа OLGA применена для исследования температурных профилей.

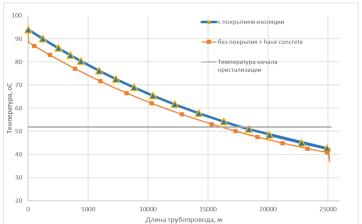


Рис. З Температурные профили трубопровода с покрытием и без изоляционных покрытий

Таким образом, из анализа значений $\mathbf{R}_{\text{изо}}$ следует, что PU Foam играет самую важную роль в теплоизоляции ($\mathbf{R}_{\text{PUFoam}}$ =0.48). Далее CWC – второй по значимости слой (\mathbf{R}_{CWC} =0.0146), хотя его теплопроводность высокая.

Значения общего коэффициента теплопередачи U одинаковы при расчете в Excel и с использованием пакета OLGA. При использовании покрытия рассмотренной конструкции значение U совпадает с рекомендованным значением компании Вьетсовпетро: U=1.913 W/($M^{2.o}$ C) [1].

При применении многослойного покрытия трубопровода температура флюида повысится на 4–5 градусов. При этом место начала осаждения АСПО будет сдвинуто на 2000 м к концу трубопровода. Это значит, что при проектировании подводных трубопроводов для предотвращения осаждения АСПО целесообразно использовать слой полиуретановой пены в составе покрытия.

Литература

- Phung Dinh Thuc. Connection between Ca Ngu Vang Oilfield and Bach Ho // PetroleumVietNam, 2016. № 2. C. 28– 32.
- Optimum Thermal Insulation Design for Subsea Pipeline Flow Assurance/ Nurfarah Hazirah Binti Zulkefli, William Pao // Universiti Teknologi PETRONAS. – 2016.
- 3. Subsea pipelines and risers/ Yong Bai, Qiang Bai Elsevier, 2005. C. 326–332.