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Abstract. The paper formulates mathematical relationships that describe the length of the 
radiation absorption band in the test object for the first generation tomographic scan scheme. A 
cylindrically shaped test object containing an arbitrary number of standard circular irregularities 
is used to perform mathematical modeling. The obtained mathematical relationships are 
corrected with respect to chemical composition and density of the test object material. The 
equations are derived to calculate the resulting attenuation radiation from cobalt-60 isotope when 
passing through the test object. An algorithm to calculate the radiation flux intensity is provided. 
The presented graphs describe the dependence of the change in the γ-quantum flux intensity on 
the change in the radiation source position and the scanning angle of the test object. 

1.  Introduction 
The analysis of the internal structure of the test object is required to solve various problems of non-
destructive testing [1–6]. X-ray tomography uses X-rays. The initial data for the analysis of the object 
internal structure are projections (X-ray patterns). An X-ray pattern is a two-dimensional shadow image. 
The structural elements in the image overlap, which does not allow examination and comparison of 
individual local fragments [7–8] in different parameters. However, if an X-ray pattern is produced from 
different directions, more data on the object internal structure can be obtained [9, 10]. 

This problem can be solved by means of X-ray computed tomography [11, 12]. The X-ray computed 
tomography measures spatial distribution of a specific physical quantity from different directions and 
computes the images free of interference caused by overlapped structures [7, 9, 13]. 

The main components of the X-ray tomograph are a tube, a detector and a rotary mechanism [11, 
13–15]. To obtain a tomographic image, the test object is placed between the tube and the detector. 
During scanning, the test object is rotated by 360˚ [11, 16]. X-rays interact with the test object material 
and form its shadow image on the detector. Thus, a set of shadow images of the scanned object is 
obtained, and the array of the images is used for mathematical reconstruction of the object cross section 
[17]. 

This paper describes a program for modeling tomographic scanning in first-generation geometry, i.e. 
the source is regarded as a point γ-ray source. 

In survey radiography, a relative X-ray intensity distribution is recorded. The radiation intensity of 
the detector decreases exponentially as the scanned sample thickness increases [18]. 
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2.  Geometry of test object scanning 
To write algorithms and programs for collecting projection data and mathematical reconstruction, 
tomography uses test objects that have a set of standard inhomogeneities with designed geometric 
dimensions located within the reconstruction zone [19–21]. 

Figure 1а shows the section of a cylindrically shaped test object with the radius r0 base. 

  
a) b) 

Figure 1. Geometry of the test object cross section, where X and Y are coordinate axes in the 
Cartesian coordinate system; x and y are distances to an arbitrary point in the Cartesian coordinate 

system; S and R are coordinate axes in the scanning system; s and r are distances to an arbitrary 
point in the scanning system; φ is the angle of the scanning system rotation with respect to the 

Cartesian coordinate system. 

The test object center coincides with the reconstruction zone center (t.0). The hole center with radius 
r2 lies in the XY plane at point (x0, y0). 

For computational convenience, turn from the Cartesian coordinate system to the polar coordinate 
system. In this case, the coordinate axes of the Cartesian coordinate system (X and Y) are replaced by 
the coordinate axes in the scanning system (S and R) through the system rotation by angle φ. Then the 
hole center with radius r2 in the scanning system (SR plane) is located at point (s, r), the value of which 
depends on rotation angle φ. 

The source radiation absorption intensity largely depends on the test object thickness. In the 
presented geometry (see Figure 1a), the test object thickness changes as it moves along the S axis, i.e. 
the test object thickness is equal to the circle chord length L(s). 

For a circle with radius r0 (in case of holes inside it), the chord length is calculated by equation [18]: 

2

( ) 2 0 1
0
sL s r

r
 = ⋅ −  
 

     (1) 

where r0 is the test object radius; s is the distance to an arbitrary point in the scanning system through 
which the chord passes. 

The holes in the test object decrease the test object thickness, i.e. the chord length reduces. To find 
the resulting chord length in case of a hole inside the object, consider the hole with radius r2 in  
Figure 1a. 
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To find the OD distance (the position of the center in the hole with radius r2 on the S axis), one must 
know the length of the segment OF (projection of the position of the center in the hole with radius r2 on 

the X axis). To find the length, consider the ∆DOF triangle. Since cosφOD
OF

= , then  

cosφOD OF= ⋅ .      (2) 

The OF segment consists of two segments OG and GF. According to Figure 1a, the segment OG = 
x0, hence  

0OF x GF= + .      (3) 

According to the theorem on the equality of angles with mutually perpendicular sides, ∠GCF is equal 

to angle φ (see Figure 1a). In this case tgφ
0

GF GF
CG y

= = . Hence 

0 tgφGF y= ⋅ .      (4) 

Substitute expression (4) into (3) to have the expression for the segment OF in the form [9]:   

0 0 φOF x y tg= + ⋅ .     (5) 

Substitute the obtained data (5) into (2), and it turns out that 

cosφ ( 0 0 tgφ) cosφ 0 cosφ 0 sin φOD OF x y x y= ⋅ = + ⋅ ⋅ = ⋅ + ⋅ . 

Consequently, the coordinates of the hole center in the scanning system depend on angle φ and can 
be calculated by the equation: 

(φ) 0 cosφ 0 sin φs x y= ⋅ + ⋅ .     (6) 

The hole chord length l(φ, s) depends on angle φ and on the distance to the hole center s. For the 
given angle φ, the chord length l of hole r2 (Figure 1a) takes the maximum value equal to 2· 2r  if 

0 cosφ 0 sin φs x y= ⋅ + ⋅  (in the hole center), and it is of minimum value equal to zero if 

[ ]0 cosφ 0 sin φ - 2s x y r= ⋅ + ⋅  and [ ]0 cosφ 0 sin φ 2s x y r= ⋅ + ⋅ +  (at the hole edges) [9, 13].  
Similarly to (1), the hole chord length is described by the expression  

2

2

( 0 cosφ 0 sin φ)( ,φ) 2 2 1
2

s x yl s r
r

− ⋅ + ⋅ = ⋅ ⋅ −   
,   (7) 

where s is distances to an arbitrary point in the scanning system; r2 is the radius of the hole in question. 
The presence of a hole decreases the chord length, which can be calculated by the equation:  

1( ,φ) ( ,φ) ( ,φ)L s L s l s= − .     (8) 

3. Calculation of radiation intensity attenuation 
In survey radiography, relative X-ray intensity distribution is recorded. To calculate the attenuation 
coefficient, it is necessary to measure both the primary radiation intensity (from the source) and the 
detector radiation intensity, which decreases exponentially as the thickness of the scanned object 
increases [18, 22]. 

The resulting radiation attenuation along the ray path through the object is determined by the 
dependence 

( )
0

s,φ

0( ,φ)

L

l dl

P s P e
µ−   ∫

= ,       (9) 
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where P0 is the radiation source intensity; P(s, φ) is the radiation intensity of the detector; μ[l(s, φ)] is 
linear radiation attenuation coefficient at point l along ray L(s, φ). 

Linear attenuation coefficient μ depends on medium density ρ and mass attenuation coefficient μρ 

ρμ μ ρ= ⋅ .      (10) 

Mass attenuation coefficient μρ is determined by chemical composition of the substance, photo 
absorption cross sections τ, Compton scattering σ, and pairing æ for each of the constituent elements, 
which values depend on radiation energy E. The total mass attenuation coefficient is calculated by the 
equation ρ ρμ ω μ i

i
i

= ⋅∑ . 

where ω i, % is percentage content of the i-th element in the substance of the test object. 
For the test object without any holes inside, but taking into account the attenuation coefficient, 

equation (1) can be written in the form 

2

0( ) 2μ 0 1
0
sL s r

r
 = ⋅ −  
 

,     (11) 

where μ0 is the linear coefficient of radiation attenuation of the test object material. 
The γ-quantum flux intensity can be also affected by holes inside the test object. Taking into account 

the linear radiation attenuation coefficient of the hole materials, equation (7) takes the form (similar to 
(1) and (11))  

2

2

( cosφ sin φ)( ,φ, ) 2 1 i i
i i i

i

s x yl s r
r

µ µ
 − ⋅ + ⋅

= ⋅ ⋅ −  
 

,   (12) 

where s, is distances to an arbitrary point in the scanning system; ri is the radius of the hole in 
question. 

The presence of a hole decreases the length of the ray along which radiation propagates. In the 
presence of n holes, taking into account the attenuation coefficients of each hole, the total decrease in 
the ray length can be calculated by the equation similar to (8): 

0
1

1( ,φ, , ) 0( ,φ, ) ( ,φ, )
n

i i i
i

L s R L s l sµ µ µ
=

= −∑ ,    (13) 

where n is the number of holes; R0i is the position of the i-th hole center; μi is attenuation coefficient of 
each hole; φ is projection angle (from 0 to 2π); ri is the radius of the i-th hole.  

During transition from the Cartesian coordinate system to the polar one, coordinates of any point (xi, 
yi) can be converted into value R. According to the Pythagorean theorem, it can be calculated by the 
equation 2 2

i i iR x y= + . 

Then expression (7) can be written in the form 
2

2

cosφ( ,φ, ) 2 1 i
i i i

i

s Rl s r
r

µ µ
 − ⋅

= ⋅ ⋅ −  
 

, where s, is 

distances to an arbitrary point in the scanning system; ri is the radius of the hole in question; Ri is the 
distance to the hole center.  
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4. Geometry of the test object scanning 
Cylindrical test objects with a set of standard inhomogeneities with known geometric dimensions 
located within the reconstruction zone are used to develop algorithms and programs for collecting 
projection data in the reconstruction tomography [13, 23]. 

The studied test object is a cylinder with a base radius r0 = 30 cm with 4 round holes. The radii and 
coordinates of the centers are equal to: r1 = 1.5 cm, point A1 (-15; 20); r2 = 1.5 cm, point A2 (15; 20); 
r3 = 4 cm, point A3 (0; 0); r4 =2 cm, and point A4 (0; 20) (Figure 1b).  

The positions of the hole centers in the new coordinate system are found by the Pythagorean theorem 
(R1 = 25 cm, R2 = 25 cm, R3 = 0 cm, and R4 = 20 cm). The displacement angle of each hole relative to 

the origin is equal to: θ1 = π – arctg 







15
20 , θ2 = arctg 








15
20 , θ3 = 0, and θ4 = 

2
3π . 

The chemical composition of the test-object material can be described by the formula Ba(NO3)2+ 
C6H10O5. The composition density is ρ = 1.8 g/cm3. Since the paper considers only one arbitrary section 
of the object, the object height is not of interest to us. 

Isotope cobalt-60 (Co60) is used as a radiation source, which γ-radiation comprises two 1.173 MeV 
and 1.332 MeV lines located side by side. Therefore, γ-radiation from Co60 is considered to be 
monochromatic at energy E0=1.25 MeV [11]. 

Table 1 summarizes the values for mass coefficients of radiation attenuation and the percentage 
content for each chemical element found in the test object material at energy of 1.25 MeV [16]. 

Using the data from Table 1 and equation (11), the mass attenuation coefficient for the test object 
material can be calculated by  

ρ ρ ρ ρ ρ ρμ ω( ) μ ( ) ω( ) μ ( ) ω( ) μ ( ) ω( ) μ ( ) ω( ) μ ( ) 0.056H H O O C C N N Ba Ba= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =  cm2/g. 

The linear attenuation coefficient of the test object material is calculated by equation (10) 

ρμ μ ρ 0.056 1.8 0.1013= ⋅ = ⋅ =  sm-1. 

The initial attenuation coefficients for each hole are determined in a similar manner and are equal to: 
μ0=0.3, μ1=0.1, μ2=0.1, μ3=0 and μ4=0, respectively. 

The equation similar to (9) can be used to calculate the detector radiation intensity in Mathcad 

0
kP P e= ⋅ ,        (11) 

where 1( ,φ, 0, ),i ik L x r r= −  (13); 00 2i
r ix r
n

= − +  are coordinates of an arbitrary point from –r0 to r0 cm 

[19, 24]. 

Table 1. Content of chemical elements and their mass attenuation coefficients for Ba(NO3)2+ 
C6H10O5 

Element Percentage, 
ω, % 

Mass attenuation coefficient, μρ, 
cm2/g 

H 3 0.114 
O 41 0.054 
C 15 0.062 
N 7 0.055 
Ba 34 0.052 

The scanning angle range φ from 0 to 2π is used to perform calculations. Figures 2–5 illustrate 
changes in the detector radiation intensity when the point source changes its position within a range 
from –30 to 30 cm (the test object size in the section plane) for scanning angles 0, π/4, π/2 and π, 
respectively.  
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Figure 2. Graph of the change in the γ-quantum flux 
intensity when the scanning line changes its position 
from –30 to 30 cm for scanning angle φ = 0 

Figure 3. Graph of the change in the γ-quantum flux 
intensity when the scanning line changes its position 
from –30 to 30 cm for scanning angle φ = π / 4 

  
Figure 4. Graph of the change in the γ-quantum flux 
intensity when the scanning line changes its position 
from –30 to 30 cm for scanning angle φ = π / 2 

Figure 5. Graph of the change in the γ-quantum flux 
intensity when the scanning line changes its position 
from –30 to 30 cm for scanning angle φ = π 

 

The graphs show that the presented calculations can be used to easily detect the position of internal 
holes and to determine their size and structure (by analyzing the attenuation coefficient). The graphs for 
different scanning angles make it possible to reveal the internal structure of the object scanned. 

5. Conclusion 
1. The mathematical relationships describing the length of the absorption line in cylindrical test 
objects are defined. Test objects containing an arbitrary number of standard irregularities of circular 
shape are used for scanning. 
2. The obtained mathematical relationships describing the length of the absorption line of γ-
quantum coming from Co60 isotope are corrected, taking into account the attenuation coefficient for the 
material with known chemical composition and density. 
3. An algorithm for calculating the length of radiation ray passing through the test object with an 
arbitrary number of standard irregularities of circular shape, which is made of the material of the known 
chemical composition and density, is provided. 
4. Test calculations are performed for several projection angles to show the possibility of modeling 
the process of collecting projection data for arbitrary sizes and locations of inhomogeneity’s in the test 
object. 
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