ИССЛЕДОВАНИЕ ТОНКОЙ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ КЕРАМИК ZrO₂ и ZrO₂-ZrB₂ ПОЛУЧЕННЫХ МЕТОДОМ УДАРНО-ВОЛНОВОГО КОМПАКТИРОВАНИЯ

В.Н. БУРДУКОВСКИЙ¹, А.С. БУЯКОВ^{1,2,3}

 ¹Национальный исследовательский Томский Государственный университет
²Институт физики прочности и материаловедения СО РАН
³ Национальный исследовательский Томский Политехнический университет E-mail: vladimirburdukovsky@gmail.com

Актуальность разработки новых конструкционных керамических материалов на основе диоксида циркония (ZrO₂) и диборида циркония (ZrO₂-ZrB₂) обусловлена уникальным комплексом физико-механических свойств этих керамик. Эти материалы обладают высокой температурой плавления, прочностью, износостойкостью и твёрдостью. В связи с этим они находят своё применение в таких сферах как: нефтегазовая промышленность, медицина, металлургия и др.

Ввиду высокой твёрдости такие материалы относятся к труднопрессуемым и для их компактирования целесообразно применять методы ударно-волнового воздействия. Уникальность метода ударно-волнового компактирования заключается в том, что к прессуемой массе порошка за короткий промежуток времени прикладывается большее по сравнению с традиционными методами нагружения количество энергии [1]. Однако несмотря на исследовательские работы ряда авторов в данной области существует недостаток научного знания о влиянии ударно-волнового компактирования на микро- и тонкую кристаллическую структуру материала.

Целью данной работы является исследование структуры керамик на основе ZrO_2 и ZrO_2 - ZrB_2 полученных методом ударно-волнового компактирования.

В работе исследованы керамические образцы на основе ZrO_2 и композиционного материала ZrO_2 - ZrB_2 , которые имели цилиндрическую форму диаметром 5-6 мм. Для исследования тонкой кристаллической структуры материалов были сняты рентгенограммы на дифрактометре ДРОН-3. В условиях фильтрованного Cu-k α излучения (длина волны $\lambda = 1,5417$ Å) в угловом диапазоне 2θ от 20° до 90° с шагом 0.05 и временем экспозиции 3 с, расшифровка рентгенограмм была произведена с помощью ПО Renex. Для оценки параметров кристаллической решётки были взяты из литературных данных [2], а также были вычислены параметры после ударно-волнового компактирования. Для определения областей когерентного рассеяния (ОКР) и микроискажений кристаллической решётки был использован метод графического построения зависимостей Вильямсона-Холла. Микронапряжения оценены как произведение микроискажений кристаллической решётки на модуль упругости исследуемого образца. Для изучения микроструктуры исследуемых керамик были получены изображения с помощью растрового-электронного микроскопа.

Рентгеноструктурный анализ исследуемых керамик на основе ZrO₂ и композита ZrO₂-ZrB₂ показал, что после ударно-волнового компактирования параметры кристаллической решётки исследуемых материалов изменились, таблица 1.

Таблица 1 -	- Исходные	и получен	ные параме	тры криста	ллической	решётки ис	следуемых
образцов							
		Исходные данные		Полученные данные			
Moranyou	Фара	(%)	1 (%)	(%)	(%)	1 (%)	(%)

		Исходные данные		Полученные данные			
Материал	Фаза	a(Å)	b(Å)	c(Å)	a(Å)	b(Å)	c(Å)
ZrO ₂	cub	5,07			5,0987		
ZrO ₂	Mon	5,1477	5,2030	5,3156	5,1547	5,1672	5,282
ZrB ₂	Hex	3,1687	3,1687	3,5301	3,1566	3,1565	3,4684

Где cub-кубическая фаза ZrO₂, mon-моноклинная фаза ZrO₂, hex-гексагональная фаза ZrB₂.

Анализ полученных результатов показал, что параметры кубического диоксида циркония увеличились на 0,5%; моноклинного: параметр а-увеличился на 0,1%, параметр bуменьшился на 0,7%, параметр с-уменьшился на 0,6%; параметры ZrB_2 : а, b-уменьшились на 0,4%, с-уменьшился на 1,7%.

Микроискажения и размеры ОКР для ZrO₂ и ZrB₂ были определены из графического построения зависимостей Вильямсона-Холла, таблица 2.

Таблица 2 – Значения микроискажений и размеров ОКР для ZrO₂ в кубической и моноклинной фазах, а также для ZrB₂ в гексагональной фазе

Материал	Фаза	3	D (Å)
ZrO ₂	cub+mon	0,006	192,24
ZrO ₂	cub+mon	0,006	154,26
ZrB_2	hex	0,0035	241,9

Исследования показали, что значения микроискажений у ZrO_2 одинаковые и составляют 0,006, а у ZrB_2 0,0035. Видно, что размеры OKP у ZrO_2 уменьшаются, у ZrB_2 наибольшее значение размеров OKP и составляет 241,9 Å.

С помощью полученных растровых изображений для ZrO₂ и ZrB₂ продольного и поперечного шлифа исследуемых образцов керамик оценен средний размер пор, таблица 3.

таблица 5 – тисловые характеристики размеров пор					
Образец и	Среднее значение	σ (μm)			
сечение	(µm)				
ZrO ₂ – попер.сеч	19,18	20,74			
ZrO ₂ -прод.сеч	32,68	28,29			
ZrB ₂ -попер.сеч	10,86	11,03			
ZrB ₂ -прод.сеч	18,63	15,05			

Таблица 3 – Числовые характеристики размеров пор

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-32-00304.

Список литературы

- 1. Первухин Л.Б. и др. Компактирование взрывом керамических порошков // Письма о материалах 2015. Т. 5. № 1. С. 57-60.
- Hannink R. H. and Garvie R. C. Subeutectoid aged Mg-PSZ alloys with enhanced thermal up-shock resistance // J. Mater. Sci. –1982. – V. 1 – No. 7. –P. 2837-2843.
- Kulkov S.N Rheology and porosity effecton mechanical properties of zirconia ceramics // Építöanyag. – 2015. – No. 4. – P. 155.
- 4. Kulkov S.N Porosity and mechanical properties of zirconium ceramics // AIP Conference Proceedings. 2014. V. 1623. No. 1. P. 225–228.