ИССЛЕДОВАНИЕ СТРУКТУРЫ ПРИРОДНЫХ ПОЛИМЕРОВ НА ПРИМЕРЕ СОСНЫ СИБИРСКОЙ КЕДРОВОЙ

 $\underline{U}\underline{V}\underline{\check{H}}\,\underline{U}\underline{S}\underline{H}^I$, Р.С. ЛАПТЕВ 2 ,Ю.С. БОРДУЛЕВ 2

¹Томский политехнический университет, ²Школа базовой инженерной подготовки E-mail: ttszyan@mail.ru

Введение. Растения подвержены действию многих факторов. В различной степени на них влияют температура окружающей среды, дефицит влаги, повышенное содержание в атмосфере CO_2 , присутствие в почве тяжелых металлов. Известно, что стресс у деревьев вызывает изменение дозы УФ радиации, дошедшей до поверхности земли и повышение концентрации токсичного тропосферного озона, особенно в промышленной зоне. Все это приводит к изменениям годичного прироста деревьев [1,2].

Позитронная аннигиляционная спектроскопия (ПАС) является современным методом изучения структуры вещества [3,4].

Первая задача — оценить насколько возможно применение этого метода к сложному многокомпонентному по своей структуре объекту, каковы требования к форме образцов для исследования и дискретность датировки характеристик образцов.

Дальнейшие цели: выявить и датировать изменения древесины клеточных стенок в растущем дереве для твердотельной, жидкой и газовой составляющих древесины.

Материал и методы исследования. Спектрометр был реализован на основе быстро-быстрой схемы. В качестве детекторов использовались сцинтилляционные детекторы Натататы H3378-50 на основе кристаллов BaF₂ цилиндрической формы, диаметром 30мм и толщиной 25 мм. Питание детекторов осуществлялось с помощью высоковольтного источника питания (ВИП, NHQ 203М). Спектрометрический комплекс включает в себя два дифференциальных дискриминатора постоянной составляющей (ДПС, FAST ComTech 7029A), блок наносекундной задержки (БНЗ, Canberra 2058), времяцифровой преобразователь (ВЦП, FAST ComTech 7072T), многопараметровый многоканальный анализатор (МРА 4) и персональный компьютер с программным обеспечением для набора спектров (ПК). Схема спектрометрического комплекса представлена на рисунке 1.

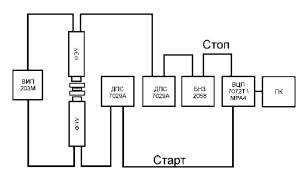


Рисунок 1 - Схема спектрометрического комплекса

Регистрация ядерного γ-кванта, с энергией 1,157 МэВ, является сигналом «старт», а регистрация аннигиляционного кванта, с энергией близкой к 0,511 кэВ, является сигналом «стоп». Время между двумя этими сигналами и является временем жизни позитрона в веществе. Импульсы с детекторов поступают на дифференциальные дискриминаторы, где осуществляется амплитудная селекция и привязка к временному фронту. Аналоговый сигнал с анода детектора «стоп» поступает на ДПС. Пороги дискриминации на нем установлены так, чтобы захватить область только аннигиляционного пика. Аналогично с сигналами «стоп». Пороги установлены таким образом, чтобы провести селекцию импульсов, соответствующих ядерным γ-квантам [5].

Результаты исследований. В процессе анализа полученных данных было выделено 3 компоненты: 1 короткоживущая и 2 долгоживущие τ_1 =373,4±0,2 пс, τ_2 =1494,3±4,1 пс, τ_3 =2757,5±23,8 пс. Первую компоненту, с относительной интенсивностью ~80%, можно однозначно связать с аннигиляцией позитронов в твердом теле (целлюлоза, лигнин и т.д.). Компонента τ_2 , в соответствии с известными литературными данными ассоциируется с орто-позитронием в жидкостях (H_2O , смолы и т.д.), заполняющими внутри- и межклеточные пространства древесины. Третья компонента разложения ассоциируется с аннигиляцией орто-позитрония в газах (CO_2 , N_2 , O_2 и т.д.), также в внутри- и межклеточных пространствах древесины. На рисунке 2 представлены интенсивности разных компонент разложения в зависимости от слоя. Компонента τ_1 , с интенсивностью 80%, вносит основной вклад, поэтому характер зависимости среднего времени жизни τ_{avg} от слоя совпадает с характером зависимости τ_1 . Уменьшение среднего времени жизни может свидетельствовать об увеличении плотности при приближении к более «старым» годовым кольцам.

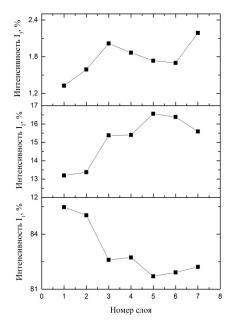


Рисунок 2 – Изменение интенсивности компонент τ_1 , τ_1 и τ_3 в зависимости от слоя

Заключение. Таким образом, ПАС является перспективным методом неразрушающего контроля структуры материалов, применяющимся в разных отраслях науки и техники.

Список литературы

- 1. Биоиндикация стратосферного озона // Под общей ред. В. В. Зуева; Рос. акад. наук, Сиб. отд., Институт оптики атмосферы [и др.]. Новосибирск: Изд-во СО РАН, 2006. 228 с
- 2. Кашулин П.А., Калачева Н.В., Артемкина Н.А., Черноус С.А. // Фотохимические процессы в растениях на Севере и окружающая среда. Вестник МГТУ, Т. 12, №1, 2009. С. 137–142.
- 3. Гольданский В.И. Физическая химия позитрона и позитрония. М.: Наука, 1968.
- 4. Графутин В.И., Прокопьев Е.П. Применение позитронной аннигиляционной спектроскопии для изучения строения вещества. Успехи физических наук, 2002, т.172. с.67–83.
- 5. Лаптев Р. С. Разработка метода аннигиляции позитронов для контроля дефектной структуры в системах металл-водород: диссертация на соискание ученой степени канд. тех. наук Томск: 2014. 129 с.