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Abstract. In the present work, the influence of the irradiation with gamma-quanta 60

Со upon 
the structural and phase state of the components of the mechanically activated powder 
composition of Ti+Al is investigated. The phase composition, structural parameters, and 
crystallinity are examined by means of X-ray diffractometry. It is found out that the irradiation 
with gamma-quanta changes the structure of the mechanically activated powder composition. 
The higher irradiation dose, the higher the structure crystallinity of both components with no 
change in phase state. At the same time, the parameters of Ti and Al crystal lattices approach to 
the initial parameters observed before the mechanical activation. The irradiation with gamma-
quanta leads to decrease of internal stresses in the mechanically activated powder composition 
while nanocrystallinity of the structure remains unchanged. Using of powder compositions 
exposed to the irradiation with gamma-quanta for the SH-synthesis helps to increase speed of 
the reaction, decrease the peak firing temperature and improve homogeneity, as well as the 
main phase of the produced material is TiAl. 

1.  Introduction 
Today, along with the traditional methods of material modification (thermal and chemical) giving the 
possibility to change physical and mechanical properties of the material, increasing attention is paid to 
extreme methods that lead to forming nonequilibrium nanostructural states in material. 
The transformation of the material structure to a nanoscale state is able to result in occurrence of 
unusual physical and mechanical properties that are essentially differ from the properties of coarse-
grained materials, and it represents a great practical interest [1-4]. 

One of the effective ways of the external influence upon materials for the purpose of 
submicrocrystalline structure creation is a mechanical activation, in which case the great doses of 
additional energy are introduced into the system that are responsible for its metastable condition. 
Given that one part of the energy is reserved in crystalline defects and the other part is used to increase 
surface energy by means of the grain size decrease [5-10]. 

At the present day, the most effective way of the new composite material obtaining consists in 
combination of preliminary mechanical activation and subsequent self-propagating high-temperature 
synthesis (hereinafter referred to as SH-synthesis) [11-13]. 

http://creativecommons.org/licenses/by/3.0


2

1234567890‘’“”

MEACS 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 327 (2018) 032051 doi:10.1088/1757-899X/327/3/032051

 
 
 
 
 
 

An ionizing radiation is also capable to change physical and mechanical properties of the material 
by means of modification of its structure [14-16]. In this case, the ionizing radiation leads to radiation-
stimulated reconstruction of the initial defective structure, taking down the local mechanical stresses 
with partial annealing of existing defects, and improving the homogeneity of electrophysical and 
structural properties [12, 17-20]. 

Moreover, depending on structural condition of the initial materials, the ionizing radiation is able to 
form a special nonequilibrium state that is notable for grain size decrease and substructural parameters 
change [21, 22]. 

In practice a radiation-stimulated diffusion is also observed. It brings the material structure into a 
more ordered state [23, 24]. 

It should be pointed out that literature data analysis has brought to light lack of information on the 
influence of ionizing radiation upon powder composition activation, SH-synthesis parameters and 
properties of produced materials. 

Therefore, the purpose of the present work is the investigation of the influence of gamma-quanta 
60
Со irradiation of Ti+Al powder composition with and without the preliminary mechanical activation 

upon the structural and phase state of the powder composition components and the main parameters of 
subsequent SH-synthesis. 

2.  Materials and methods 
The powder composition of Ti+Al has been chosen as an object under investigation because titanium 
aluminides and alloys on their base are used increasingly frequently as structural materials for work in 
extreme conditions [25-29]. It is possible to use the obtained experimental results as a processing 
technology for nanocomposite composition modification [30-31]. 

A simple powder composition of Al (36%wt) + Ti (64%wt) was prepared from titanium powder 
with the average particle size of 50±10 µm and aluminium powder with the average particle size of 12 
µm. Subsequently the mechanical activation during the 7 minutes was conducted in the planetary ball 
mill under normal acceleration of 40 g. The grinding bodies-to-initial material weight ratio was 20:1. 
To eliminate oxidation, air from the mill cylinders was pumped out and then the cylinders were filled 
up with argon under the pressure of 0.3 MPa. After the mechanical activation, the powders were taken 
out from the cylinders inside a special box, in argon atmosphere [32-33]. 

Then the mechanically activated powder composition was used to produce cylindrical samples with 
the diameter of 10 mm and height of 5 mm. The pressing of samples was conducted under room 
temperature by means of the conventional laboratory press with the load of 40 kN. 

The irradiation with gamma-quanta 60
Со was conducted in the certificated fixed system under 

normal climatic conditions. The level of gamma-quanta radiation was determined with absorbed dose 
Dγ [Gy]. 

For structural phase analysis, the general purpose X-Ray diffractometer DRON-6 on the base of 
copper radiation [CuKα(λ=0.15418 nm)] was used. The diffraction patterns of all samples were 
registered under the same conditions that gave an option of comparing obtained values in more 
specific way. Scan step h during the measurements was equal to 0.05° and the exposure time was equal 
to 3 seconds. The processing and analysis of the experimental data were conducted by means of 
PDWin software. For the fine structure parameter determination, the Size&Strain utility of the PDWin 
software was used, with adjustment for instrumental broadening. Grain sizes and microstrains were 
determined as the coefficients of the equations set by means of the least absolute deviation method. 

The investigation of samples microstructures was conducted on the polished sections using the 
metallographic electron microscope Carl Zeiss EVO50 XVP. 

At the final stage, the experimental SH-synthesis of the Al+Ti powder compositions under 
investigation was conducted (for initial material, mechanically activated one, and mechanically 
activated one with subsequent irradiation with gamma-quanta). The synthesis was implemented at the 
volume firing by means of induction heating that is capable to generate electromagnetic energy in a 
broad power range. The diagram of the installation used for the SH-synthesis is shown in Figure 1. 
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Figure 1. The diagram of the experimental 
installation including the RF-induction coil used 
for the SH-synthesis: 1 – powder composition; 2 
– black-lead crucible; 3 – induction coil; 4 – 
thermocouples; 5 – vacuum chamber. 

 
In all cases, the high-temperature synthesis was conducted under the same conditions in the 

following way (see Figure 1). Powder composition 1 was put into black-lead crucible 2. The 
composition together with thermocouple 4 was consolidated with the laboratory press under the 
pressure. After that the black-lead crucible with the pressurized powder and the thermocouple was put 
into induction coil 3 in vacuum chamber 5. Then the SH-synthesis was initiated by means of 
composition heating with quickly alternating electromagnetic field. For the measuring of the synthesis 
temperature, the tungsten perrhenic thermocouples connected to the multichannel ADC board 
combined with PC were used. 

3.  Results and discussion 

3.1 The investigation of the mechanically activated powder compositions 
Let us consider the results of the investigation of the mechanically activated powder compositions 
with and without subsequent irradiation with gamma-quanta. In Figure 2, there are diffractograms of 
the Ti+Al powder compositions obtained at all stages of the research. 

 

Figure 2. The diffractograms of Ti+Al powder 
composition: (a) – the initial composition; (b) – 
the composition after mechanical activation; (с) – 
the composition after mechanical activation and 
irradiation with Dγ = 2·103 Gy; (d) – the 
composition after mechanical activation and 
irradiation with Dγ = 5·103 Gy; (e) – the 
composition after mechanical activation and 
irradiation with Dγ = 2·104 Gy. 

 
Let us consider the changes at the diffractograms driven by the mechanical activation of the 

powder composition. After the mechanical activation of the initial powder composition at the 
diffractogram (Figure 2b), the Ti and Al diffraction reflections of low intensity and increased diffuse 
background are seen as compared with the diffractogram of the initial composition. That gives 
evidence of small grain sizes and presence of nonequilibrium defects in the ground material. The 
additional formations do not appear after the mechanical activation. 
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As a gamma-quanta irradiation dose becomes higher (Figure 2c, d, е), the increase of the 
composition components structure crystallinity up to the initial values is seen (at the peak irradiation 
dose the intensity of diffraction reflections from the irradiated sample is close to the intensity of peaks 
of the initial composition). However, a little relative peak broadening is preserved that may give 
evidence of the retention of crystalline nanostructural state as well as the presence of residual 
microstrains. 

The Ti and Al fine structure determination approved that with the change of the irradiation dose, 
the coherent scattering region (crystalline size) of D titanium and aluminium changes too, as it is 
shown in Figure 3. It has also been established that with the gamma-quanta irradiation dose growth, 
the microstrains of mechanically activated composition lower (Figure 4). 

 

 

 
Figure 3. Crystalline sizes of the 
mechanically activated composition versus 
the gamma-quanta dose 

 Figure 4. The powder components lattice 
microstrains versus the gamma-quanta 
dose. 

 
The calculation of the precise parameters for the irradiated and mechanically activated samples has 

shown that after the irradiation with gamma-quanta, the structure crystallinity grows and the structural 
state of the components changes. Furthermore, under the irradiation, the Ti lattice parameters grow 
while the Al lattice squeezes.  

Comparing the diffraction patterns and calculated data allows assuming that irradiation with 
gamma-quanta leads to the partial annealing of the defects (Figure 4). However, the grains of both 
components retain their nanostructural state (Figure 3). From there, the investigation results shown 
above allow concluding that the ionizing radiation leads to a decrease of local mechanical stresses and 
annealing of crystalline material structural defects. This matches the investigation results published 
earlier [14, 18-20]. 

In Figure 5 the microstructure of the composition samples under investigation is shown. The image 
is obtained by means of electron microscope. Under the low irradiation dose (Figure 5a), the non-
homogeneous structure in the form of eutectics with the high degree of dispersion is observed. 
Herewith an essential part of light titanium inclusions of prolate form is present. They are 
homogeneously distributed in the aluminium matrix that has fibrelike structure of dark color. With the 
irradiation dose growth (Figure 5b), the structure becomes more homogeneous and the quantity of 
titanium inclusions increases as compared with the small dose area. In both cases, the two different 
phases have no definite border between them and the general sample structure is vesicular. 

The research mentioned above shows that the preliminary mechanically activated powder 
compositions have non-homogeneous state that is characterized by excess energy induced by 
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submicron sizes of grain and the presence of microstrains. 

  
Figure 5. The microstructure of mechanically activated powder composition: (а) – Dγ = 2·103 Gy; (b) 
– Dγ = 2·104 Gy. 

 
The irradiation with gamma-quanta provides an opportunity to change structural state of the 

mechanically activated Ti+Al compositions through the modification of precise parameters of the 
composition components lattices and their fine structure. 
In particular, the change of irradiation dose makes it possible to stabilize the structure of the 
mechanically activated composition, decrease stress, perform radiation defects annealing, and retain 
the nanocrystallinity. 

Therefore, the ionizing radiation (in particular, gamma-quanta) gives an opportunity to change 
intentionally the structural properties of mechanically activated powders, decrease their level of 
defectiveness, and improve homogeneity of their properties. 

3.2 The investigation of SH-synthesis 
The next step of the research is a high-temperature synthesis of the Ti+Al powder composition 
described above. 

In all cases, the SH-synthesis was conducted under the same conditions with thermal explosion 
obtained by means of inductive heating. The heating source was disconnected at the moment when the 
composition achieved the peak temperature. Then the composition cooled down to the room 
temperature. The diagram of the installation is shown in Figure 1. 

In Figure 6, the SH-synthesis thermograms for corresponding powder compositions are shown. As 
it is seen, in the case of simple mechanical powder composition (Figure 6a) the heating reaction begins 
at the aluminium melting point that is equal to about 660 °С. 

The preliminary mechanical activation of the powder composition increases its reactivity that leads 
to the acceleration of chemical reactions (Figure 6b). In this case, the reaction starts at solid phase and 
the heating reaction starts at the temperature that is close to the temperature of the environment. In the 
case of the SH-synthesis of the mechanically activated and gamma-quanta irradiated powder 
composition (Figure 6c), the reaction starts with the aluminium melting as in the case of the initial 
powder composition that was not subject to any processing (Figure 6a). The solid-phase reaction that 
is present in the case of the simple mechanically activated composition (Figure 6b) does not take place 
here. However, as opposed to the first case (Figure 6a), the reaction speed increases and the peak 
firing temperature decreases (Тmax=1030 °С in this case, and Тmax=1100 °С in the case of the simple 
composition). 

In Figure 7, the diffractograms of the SH-synthesis products produced from the different powder 
compositions are shown. The diffractograms analysis approves that in the cases of the initial powder 
composition synthesis and the mechanically activated powder composition synthesis, the end products 
are TiAl, TiAl3, Ti3Al, and there is residual β-Ti. 

The content of TiAl3 in the sample of the mechanically activated composition is lower as compared 
to the sample of the initial powder composition. In this case, the observed low peak intensity and peak 
broadening give evidence of non-homogeneous state of the structural components. In the case of 
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synthesis of the mechanically activated composition with subsequent irradiation with gamma-quanta, 
the main phase is TiAl, while the combinations of TiAl 3 and Ti3Al are present in small quantities. 

 

 

 
Figure 6. The SH-synthesis thermograms for 
the powder compositions: (a) – the initial 
composition; (b) – the mechanically activated 
composition; (с) – the mechanically activated 
composition at Dγ = 1·103 Gy 

 Figure 7. The diffractograms of the products 
of the Ti+Al powder composition SH-
synthesis: (a) – the initial composition; (b) – 
the mechanically activated composition; (c) – 
the mechanically activated composition at Dγ 
= 1·103 Gy. 

 
Therefore, the irradiation with gamma-quanta of the mechanically activated Ti+Al powder 

composition gives opportunity to change the parameters of the SH-synthesis. Herewith the portion of 
the main product TiAl increases, while the secondary phases TiAl3 и Ti3Al decrease, and the 
homogeneity of the product obtained gets better. 

The investigation results shown above allow concluding that the gamma-quanta 60
Со irradiation of 

the mechanically activated Ti+Al composition is capable to change the SH-synthesis parameters in an 
appropriate manner in order to obtain the better product. 

It is worth to note that such an influence can be expected from the other types of ionizing radiation. 
Obviously, for use in practice irradiation with gamma-quanta of powder compositions intended for the 
SH-synthesis, it is important to determine the optimal irradiation dose. 

The same influence can be expected from ionizing radiation (in particular gamma-quanta radiation) 
not only for other powder materials intended for the SH-synthesis, but also in the case of using other 
powder technologies. 

4.  Conclusion 
Let us summarize the core results and conclusions obtained in this research. 

1. The gamma-quanta irradiation of the mechanically activated Ti+Al powder composition 
changes its physical and mechanical properties through the modification of the composition 
components structural state. 

2. The gamma-quanta influence leads to the improvement of composition components 
structural states that were violated by the mechanical activation. The evidence for this is the increase 
of the diffraction reflection intensity of the composition components, and turning back of the lattice 
parameters to the initial state. Herewith, the Ti lattice parameters grow while the Al lattice parameters 
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decrease. 
3. The gamma-quanta influence stimulates radiation annealing of nonequilibrium defects in the 

mechanically activated composition while the grain sizes remain unchanged. 
4. The microstructure of the samples produced from the mechanically activated composition 

with subsequent irradiation with gamma-quanta by means of pressing has no definite borders between 
composition components due to their redistribution as the result of radiation-stimulated diffusion. 

5. The gamma-quanta irradiation of the mechanically activated Ti+Al powder composition 
changes the parameters of the high-temperature synthesis (the reaction rate increases, the peak firing 
temperature decreases), and the main phase of the obtained product is TiAl.  
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