ПРИМЕНЕНИЕ ИПХТ ДЛЯ ИММОБИЛИЗАЦИИ ВАО ПОСЛЕ ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКИ ОЯТ

Карелин В.А.^{1,a}, Тихонов М.А.^{1,b}, <u>Шутова С.К.^{1,c}</u>, Карелина Н.В.^{2,d}

¹Национальный исследовательский Томский политехнический университет, Томск, Россия

²Санкт-Петербургский Горный университет, Санкт-Петербург, Россия

^avakarelin@tpu.ru, ^bimax927@gmail.com, ^csofisnake@outlook.com, ^dnvkarelina@yandex.ru

В процессе экстракционной переработки ОЯТ реактора на тепловых нейтронах с выгоранием 33 ГВт·сут/т после выдержки топлива в течение 1 года на 1 т ОЯТ образуется: 0,4 т оболочек и конструкционных элементов ТВС с активностью $\sim 1,7\cdot 10^4$ Кu; 20-1200 л концентратов жидких высокоактивных отходов (ВАО) с активностью $\sim 10^4$ Ku; газовых отходов, содержащих $\sim 1\%$ первоначальной активности топлива; ~ 60 м³ низко- и среднеактивных отходов, содержащих $\sim 1\%$ радиоактивных элементов [1, 2].

Наибольшую сложность представляет утилизация жидких ВАО. На действующих в настоящее время производствах по переработке жидкие ВАО выдерживают в течение определенного периода времени в специальных охлаждаемых емкостях, упаривают до образования осадка солей нитратов, проводят денитрацию, сушку, прокаливание с образованием кальцината, плавление с использованием стеклофритты в керамических плавителях. Полученный расплав охлаждают и отжигают для снятия внутренних напряжений в полученном продукте. Основной недостаток вышеописанной технологии – выход из строя нагревателей керамических печей остекловывания и невозможность их ремонта из-за высокой активности перерабатываемого продукта.

Для устранения этого недостатка предложено использовать принципиально новый индукционный метод нагревания предварительного полученного осадка нитратов ВАО с применением индукционного плавителя с холодным тиглем (ИПХТ). Использование такого аппарата позволяет вести процесс в широком температурном интервале (до 2000 °C) и получать материалы различного химического состава. Особенностью плавителя является образование между расплавом и водоохлаждаемой стенкой слоя частично расплавленной шихты (гарниссажа), что защищает конструкцию от коррозионного воздействия расплава. Активный гидродинамический режим за счет интенсивного конвективного перемешивания обеспечивает быструю гомогенизацию расплава и высокую производительность процесса. Производительность установки (по остеклованному продукту) составила 3100 кг (м²/сут), а удельные энергозатраты — 8-9 кВт·ч/кг. Показано, что в процессе ИПХТ возрастает производительность и падают энергозатраты, если процесс проводят в тигле большого диаметра.

Состав отходящих из установки газов: NO и NO₂ – до 3000 мг/м³, CO – до 50 мг/м³, HCl – 262 (26,2-846) мг/м³, F – 1,32 (0,67-3,44) мг/м³, SO₂ - 132 (25-271) мг/м³. Потери Cs₂O не превышали 30-60 % мас.

В результате выполненных исследований показано, что эффективность ИПХТ осадка нитратов ВАО с большой долей алюминия и железа падает как при увеличении концентрации воды в шламе от 50 до 70 % мас., так и при повышении содержания имитатора высокоактивных отходов в стеклопродукте от 50 до 65 % мас. и более. В продуктах с более 60 % мас. осадка нитратов ВАО появляется нефелин, хотя химическая устойчивость стеклопродукта остается высокой. Поэтому в стеклопродукте рекомендуется ограничить содержание осадка нитратов ВАО до 55-60 % мас. При содержании влаги не более 50 % мас. в загружаемом в ИПХТ шламе.

СПИСОК ЛИТЕРАТУРЫ

- 1. Землянухи В.И., Ильенко Е.И., Кондратьев А.Н. и др. Радиохимическая переработка ядерного топлива $A \ni C. M.$, \ni нергоатомиздат, 1983. 232 с.
- 2. Bericht uber das in der Bundesrepublic Deutschland geplante Enstorgungszentrum für ausgediente Brennelemente aus Kernkraftwerken. Hannover: DGWK 1977. 308 S.