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Abstract. In this paper we report on the characterization by X-ray computed tomography of 

calcium phosphate (CaP) and polycaprolactone (PCL) coatings on Ti-6Al-4V alloy scaffolds 

used as a material for medical implants. The cylindrical scaffold has greater porosity of the 

inner part than the external part, thus, mimicking trabecular and cortical bone, respectively. 

The prismatic scaffolds have uniform porosity. Surface of the scaffolds was modified with 

calcium phosphate (CaP) and polycaprolactone (PCL) by dip-coating to improve 

biocompatibility and mechanical properties. Computed tomography performed with X-ray and 

synchrotron radiation revealed the defects of structure and morphology of CaP and PCL 

coatings showing small platelet-like and spider-web-like structures, respectively. 

1. Introduction 

3D scaffolds are biomaterials with predetermined architecture and optimized functionality used as 

implants for segmental bone reconstruction. Electron beam melting (EBM) additive manufacturing 

allows forming complex components from powdered precursor material by sequentially and 

selectively melting layers using CAD models and embedded software to control the electron beam. 

Although conventional micro-lining or sintering technologies do not give open cell structures from 

several metals or alloys (such as Ti-6Al-4V), EBM may be used to fabricate complex structures for 

any pre-alloyed precursor powder.  

A particularly new application of EBM involves the manufacture of open cellular structures with a 

predetermined modulus of elasticity or stiffness (E). Typical example of such structures are orthopedic 

implants designed to prevent bone shielding (stress shielding) by reducing E for high modulus solid 

metals by more than an order of magnitude [1-3]. Five types of scaffolds with gradient porosity based 

on Ti-6Al-4V-alloy with different designs and densities were manufactured and investigated by 

uniaxial compression tests to reveal the influence of the apparent scaffold density on mechanical 

properties [4]. The idea of multilayered scaffold was in mimicking different type of bone structures 

including cortical-like (with high density), and trabecular-like (with low density) in one scaffold. The 

stress-strain curves for all of samples demonstrated considerable ductility which means that parts with 

different porosities of multilayer scaffolds could change elastic modulus and ultimate compress 
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strength of the structure. Thus, gradient cellular structures manufactured by EBM from Ti-6Al-4V 

have certain advantageous properties for biomedical applications such as high plastic deformation and 

high strength [4, 5]. Biocompatibility of implants is of great importance from biomedical applications 

viewpoint. Therefore, our project focuses on combining complex scaffold geometries and 

biocompatible coatings to improve both mechanical behavior and biocompatibility of the implants for 

bone surgery. The aim of the study is investigating the dip-coating process of complex cellular 

structures and the properties of resulting coating layers by X-ray computed tomography. Issues of 

specific interest were the influence of scaffold geometry on the results of coating, defects of the 

structure itself and coating, and structure and properties of the coating. is a technique of choice to 

investigate these essential aspects. 

2. Materials and methods 

2.1. Specimens 

Porous scaffolds of Ti-6Al-4V alloy were fabricated by EBM system (Arcam EBM, Mölndal, 

Sweden). The structures were built layer-by-layer using a precursor Ti-6Al-4V powder (Arcam AB, 

Mölndal, Sweden), with particle size distribution of 75-125 μm. The additive manufacturing 

equipment was described in [6, 7]. 

We fabricated porous scaffolds with two different outlines: a cylinder with an overall height of 30 

mm and a diameter of 15 mm (figure 1) with a central full-length bore hole of 5 mm in diameter. The 

cylinder consisted of 2 coaxial zones of different density. The outer zone had a more dense structure to 

imitate cortical bone, whereas the inner zone with an outer diameter of 11 mm had a less dense 

structure to imitate trabecular bone. Outer and inner zones had diamond-like unit cell structure widely 

used in additive manufacturing of porous and graded lattice structures [8]. The second type of scaffold 

represents a prismatic structure with a height of 20 mm and a base of 10 x 10 mm
2
 with body centered 

cubic (BCC) elemental cells.  

We coated the fabricated scaffolds with calcium phosphate (CaP) and polycaprolactone (PCL). CaP 

is known for its biocompatibility and is widely used as coating for titanium and titanium alloy 

implants due to various surface treatments which may ensure good mechanical properties [9]. PCL is 

also known as an established material for bone implants, due to its biocompatibility, mechanical 

strength and biodegradability [10, 11] which was suggested to improve mechanical properties of the 

metal scaffolds. 

 

 
Figure 1. CaP coated scaffolds: a – two- zone cylindrical scaffold (side view),  

b – two-zone cylindrical scaffold (top view) and c – prismatic scaffold. 

 

Modification of the scaffolds’ surface with CaP was performed by dip coating method [12]. The 

scaffolds were dipped five times in aqueous solutions of CaCl2 and NaH2PO4 diluted in distilled 

water with concentrations of 0,055 and 0,107 g/ml, respectively. Each dip cycle consists of two 

immersions in each solution sequentially for 1 minute with intermediate rinsing in distilled water. 
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Figure 2. PCL coated scaffolds: a – 2 zone cylindrical scaffold (side view), b – 2 zone 

cylindrical scaffold (top view), c –prismatic scaffold 

 

After 5 dip cycles pores of the scaffolds were not completely filled, indicating the imperfection of 

the deposition process. Therefore, scaffolds were dipped with eight more cycles in solutions of CaCl2 

and NaH2PO4 with the same concentrations diluted in distilled water with 25% ethanol under 

sonication to improve the coating process [12].  

The PCL coating of the scaffolds was performed by manual dip-coating method according to a 

slightly changed process described in [13]. We prepared 5% PCL solution in chloroform under 

continuous shaking. The samples were soaked in the solution for 5 minutes prior to drying at room 

temperature (figure 2). The PCL was supposed to fill the inner volume of scaffolds with porosity of 

more than 50 % and bond struts together. 

2.2. X-ray computed tomography 

X-ray computed tomography (CT) was used to get 3D images showing internal structure of coated 

scaffolds. High resolution of the method allows for studying shapes of individual pores, surface 

roughness and structure of the coating, distribution of defects, presence of unmolten or partially-fused 

powder particles on the metal of scaffolds, thermal cracks [3, 14]. The CT measurements were carried 

out using a V|tome|x L 180/300 system from General Electrics. A voxel size of 10µm was achieved 

using an X-ray tube voltage of 135 kV and current of 70 μA Additionally, high resolution synchrotron 

CT (SRCT) was conducted on the beamline BAMline at the synchrotron BESSYII, Helmholz Zentrum 

Berlin. The energy of monochromatic X-ray beam was set to 50 kV and a voxel size of 0.438µm was 

achieved using a CCD camera with a 10x objective. 

The reconstruction of 3D volumes from 2D projections of synchrotron radiation computed 

tomography (SRCT) data was made by BAM in-house developed filtered back projection software, 

and a single-distance phase-contrast correction algorithm [15], using ANKA phase software [16]. The 

proprietary reconstruction software from General Electric was employed for the image reconstruction 

in X-ray computed tomography. The reconstructed data were processed using FiJi ImageJ software 

and AvizoFire version 8.4 was used for 3D rendering [17]. 

The fine structure and small X-ray attenuation coefficient of the CaP makes it poorly 

distinguishable in the reconstructed volume obtained by X-ray CT (voxel size = 10 μm). Therefore, 

further investigation of the samples coated with CaP was performed only by synchrotron- based CT. 

The field of view for the setup with maximum magnification (i.e. pixel size of 0.438µm) available at 

the BAMline is 1.7mm. Since the sample dimensions exceed this value, the “region of interest SRCT” 

approach should be employed. In this case only a limited volume at the center of the sample can be 

observed limiting its application to the prismatic samples as the cylindrical ones have the central hole 

Therefore, the SRCT was carried out only on prismatic samples also having a shorter distance between 

struts (more material of interest in the field of view). Prior to analysis the reconstructed data were 

treated in order to correct ring artefacts and suppress noise. This allowed enhancing the contrast and 

improving the threshold segmentation of the Ti-6Al-4V scaffold and CaP particles.  
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3. Results and discussion 

Analysis of the acquitted data reveals that CaP-based layer consists of randomly oriented platelets with 

CaP particles attached to the scaffold surface and filling the entire space inside one cell of the scaffold 

structure (figure 3a). Since the imaged region of interest is in the center of sample it is possible to 

suppose that CaP could fully fill the inner parts of the lattice structure after certain number of dip-

coating cycles. 

Figure 3b shows the surface of the Ti6Al4V scaffold itself with partially molten powder particles 

attached to the surface. These particles increase the surface roughness, and one can clearly see 

geometrical deviation of the real scaffold from the CAD model with cylindrical struts 

 
Figure 3. Segmented SRCT data from a prismatic structured 

scaffold coated with CaP: а – CaP-based platelets (in purple) 

and Ti-6Al-4V metallic scaffold (in grey), and b – Ti-6Al-

4V metallic scaffold (in grey) with CaP digitally removed. 

 
Figure 4. Reconstructed lab CT slice of the cylindrical sample with PCL coating: the 

white areas corresponds to metal (Ti-6Al-4V), the light grey color ones- to PCL, the dark 

grey and black ones- to air (e.g. cavities inside PCL). 

 

The reconstructed slice of the cylindrical lattice sample coated with PCL is shown in figure 4. 

Areas with different grey level intensity correspond to different materials. Although two zone 
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cylindrical scaffold was completely immersed in the polymer, cavities in the dried up PCL structure 

were observed (figure 4). The less dense inner zone of the scaffold with larger spacing between struts 

is not filled by PCL, and only polymer "filaments" of 0.6-0.8 mm between the neighboring struts are 

observed.  

Another feature that was revealed for the PCL coated samples was the presence of unattached 

metal powder particles inside PCL (figure 5, red color). They are mostly located in the outer sample 

zone with smaller spacing between struts. Most probably these are the particles left after the 

incomplete lattice scaffold sample cleaning after manufacturing. Thanks to PCL metal particles will 

not get inside the human body after implantation until PCL degrade. However, the presence of the 

particles indicates that a better cleaning process of the scaffolds is required after manufacturing. 

  
Figure 5. Segmented SRCT data from a part of the 

cylindrical sample. Red color corresponds to unattached 

metal powder particles trapped in the PCL. 

The SRCT data showed the existence of cavities in the structure of dried PCL in the prismatic 

scaffold samples (figure 6), similar to the observation for the cylindrical specimen (figure 4). In 

addition, the attachment of PCL to the scaffold does not take place over the whole surface. Thus, a gap 

is formed between metal and PCL both near the latttice nodes (figure 6b) and around the lattice struts 

(figure 6a). Gap or void implies a lack of adhesion between metallic scaffold and polymer in some 

areas. This fact can be caused by pour wettability of additively manufactured Ti-Al6-V4 surfaces, 

presence of unwanted impuritues or by some imperfections of the coating process. 

 
Figure 6. The part of reconstructed SRCT images of prismatic 

scaffold samples coated with PCL:a – "web-like structure" of PCL 

between two struts, b – PCL on the surface of the strut. 
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4. Conclusion 

The dip-coating method was used to form CaP and PCL coatings on the surface of porous scaffolds 

prepared by electron-beam melting. With the chosen procedures CaP and PCL coatings did not 

completely fill the internal structure of the scaffolds, which was clearly revealed by using X-ray CT. 

This indicates that the process of coating needs to be modified. It is possible to suppose that CaP could 

fully fill the inner structure if certain number of dip-coating cycles would be conducted. 

Synchrotron based computed tomography having better spatial resolution revealed the formation of 

cavities inside the PCL. Moreover, PCL forms "filaments" and web-like structures between 

neighboring struts of the scaffold, which in some cases are not fully adhered to the scaffold surface. 

Gaps between the polymer coatings and metal surfaces were also detected. This may be caused by 

imperfections of the coating process, and, possibly, by inadequate wettability of the additively 

manufactured Ti6Al4V surfaces. Powder particles of the precursor metal not attached to the scaffold 

surface spread inside PCL were observed. It indicated deficiencies in the process of scaffold cleaning 

after the EBM manufacturing. Nevertheless, PCL can bind the unattached particles preventing their 

contact with the tissue and their release from the scaffold structure. 

Overall, computed tomography is a powerful non-destructive tool that can give 3D morphology of 

the coatings and their defects, in addition to the geometry of the scaffolds. 

Future work will focus on the improvements to the coating process, and on extending the coating 

characterization (overall thickness, local thickness, defects size and location) and on correlating this 

information with the mechanical properties. 
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