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Abstract. The paper introduces the mathematical model of rotor for active 
magnetic bearing reaction/momentum wheels, used as actuator in 
spacecraft attitude and orbit control system. Developed model is used for 
estimation of critical speeds and forced oscillation magnitudes with a 
glance of the rotor modes. Rotor is considered as a two-mass system, 
consisting of a shaft and a rim, active magnetic bearings are assumed to be 
a linear elastic springs. The equations of the rotor motion are derived using 
the Lagrange equation. Developed model is verified by comparing the 
calculated Campbell diagrams with the results of the finite-element modal 
analysis, performed in the ANSYS software. 

1 Introduction  
Continuous complication of tasks, performed by modern satellites requires the increasing of 
attitude and orbit control systems operating performance, primarily pointing accuracy and, 
what is equally important, pointing stability. These parameters are key for high precision 
optical and astrophysical instruments, used on advanced Earth observation satellites, orbital 
observatories and telescopes. Nowadays, the need of pointing stability improvement leads 
to the fact, that the great efforts are applied to solving the microvibration and force-torque 
disturbances issues. Typically, spacecraft internal disturbances are generated by on-board 
electromechanical equipment, including reaction wheels (RW) [1-4]. The major RW 
disturbances sources are ball bearing vibrations, caused by geometrical imperfections, 
dimensional drift of bearing elements and internal clearances of bearing unit, rotor residual 
unbalances, determined by the balance quality, control torque ripple, produced by friction 
torque instabilities [1]. Thus, mainly ball bearings excite the RW micro-disturbances. 

Using of active magnetic bearings (AMB) for rotor support is a one of the possible ways 
to attenuate the RW microvibrations and disturbances. Typically, AMB is a mechatronic 
system, composed of control object (rotor), actuators (electromagnets), feedback sensors 
and control system. Significant suppression of the disturbances requires development of the 
rotor mathematical model, included rotor modes, since they determine the critical speeds 
and forced oscillations amplitudes inside the gap. 
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2 Mathematical model of RW rotor  

RW rotor consists of the rotating parts of electric drive and AMB, mounted on the 
flywheel. To ensure the optimal mass and inertial characteristics of the rotor (the maximal 
polar moment of inertia Jp with the minimal mass M), flywheel comprises of the massive 
rim, linked to the shaft by a thin lightweight disk (Figure 1a). Results of the RW rotor 
modal analysis show, that in the case of rigid supports the first natural frequency generally 
associates with the angular oscillations of the rim and the disk about the lateral axes  
(Figure 1b). The value of this frequency is rather low and can be spotted in the operating 
range of rotational speed [5]. 
 

         
     а)                 b) 

Fig. 1. RW rotor (a) and its first mode (b) 

This mode shape allows the RW rotor to be seen as a two-mass system, consisting of the 
shaft and the rim. The shaft is defined by mass Ms, polar and equatorial moments of inertia 
Jp.s, Je.s, rim is defined by mass Mr, polar and equatorial moments of inertia Jp.r, Je.r. There 
are the following bounds in the system: linear translations and rotation about spin axis are 
performed by rim and shaft simultaneously (the bound are rigid). The rim rocking relative 
to the shaft about transversal axes is described by the angular stiffness Rd. 

The following coordinate systems are introduced: XYZ – frame of the RW; OXsYsZs – 
rotating frame related to the shaft; OXrYrZr – rotating frame related to the rim. Oxyz, 

s s sOX Y Z   , r r rOX Y Z   , s s sOX Y Z   , r r rOX Y Z    – intermediate frames, describe the shaft and 
rim position after linear and angular displacements (Figure 2). 

 
Fig. 2. Model of the flexible RW rotor 
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Fig. 2. Model of the flexible RW rotor 

Thereby, subjected to restrains, position of the shaft and rim of the RW rotor is 
describes by eight generalized coordinates: linear translations of the shaft and rim x, y, z, 
spinning ψ=ωt, shaft and rim rocking about transversal axes with the angles φs, θs и φr, θr 
respectively (Figure 2). 

Mathematical model of RW rotor is derived by solving the Lagrange equation for every 
generalized coordinate q.  

Projection of the angular velocity vectors of the shaft and rim ωs(r) on the axes of the 
rotating frames OXsYsZs and OXrYrZr. 

 
Assuming the rocking angles φs, θs, φr, θr are negligible (cosθs(r)≈1, sinθs(r)≈θs(r)) 

projection of the angular velocity vectors can be written in the following form 

 

Axes of rotating frames coincide with the principal axes of inertia, therefore the kinetic 
energy of the rotor 

 

Finally, the kinetic energy of the rotor is obtained by substituting equation (2) into 
equation (3)  

 

The following assumption is made in consideration of potential energy of the system P. 
Since the objective of this stage is consideration and identifications of the dynamic 
characteristics of single rotor, so it is sufficient to model the radial and axial AMB in the 
form of ideal elastic and isotropic springs with stiffnesses CA, CB и CZ. This assumption, 
firstly, eliminates the effects of control algorithm and electromagnetic processes in AMB 
and defines the investigated dynamic behavior of the rotor. Secondly, it gives an 
opportunity to compare analytical results, obtained by solving the developed model, with 
the results of modal finite-element analysis. Thus, potential energy P is concentrated in the 
elastic supports CA, CB, CZ and in the elastic link of the rim and shaft Rd, so 

 

where a, b – distances between center of mass and radial supports, in the case of 
asymmetrical rotor a≠b. 
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Derivatives of Lagrangian for generalized coordinates: 

 

 

 

 

 

 

 

 

where C = CA + CB; N = CA a + CB b; Rs = CA a2
 + CB b2. 

Mathematical model of rotor forced oscillations under forces Fx(t), Fy(t), Fz(t) and 
torques Mx(t), My(t), Mz(t) is in the following form: 

 

3 Results 
Verification of the developed mathematical model of the flexible asymmetrical rotor was 
carried out by comparing analytical Campbell diagrams, obtained by solving the system 
(14) with the results of modal finite-element analysis, performed in the ANSYS (Figure 3). 
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Fig. 3. Campbell Diagrams (a – analytical; b – ANSYS) 

 
Excluding the axial translations z and spinning ψ=ωt, an asymmetric system have three 

critical speeds (Figure 3), on each speed rotor perform a complex motion, combined of 
translation and rocking, accompanied by natural oscillations. Analytical critical speeds 
agree with the results of ANSYS modal analysis, relative error less than 1% (Table 1). 

Table 1. Critical speeds of rotor in the operating range of rotational speed 

Mode Critical speed, rad/s Relative error, % Analytical ANSYS 
Rocking, backward whirl 91,1 90,6 0,55 
Rocking, forward whirl 469,8 467,1 0,58 

Radial translation 533,4 529,8 0,68 

4 Conclusions 
The developed mathematical model is used for estimation of natural frequencies and critical 
speeds of flexible rotor of reaction wheel equipped with active magnetic bearings. The 
relative error of the developed model in comparison with the results of FEM analysis isn’t 
exceed 1%, therefore model can be used for optimization and further investigation of the 
dynamic behavior of AMB system. 
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