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Analytical estimation of central reflector influence by the example of slab reactor in one-group and diffusion-growing approximations
has been carried out. On the side of external reflector an effective border is introduced which simplifies the mathematical statement of
critical problem. Approbation of the solution is performed for one of the states of the researched IRT-T reactor.

Introduction

Estimation of critical parameters or critical concen-
tration (mass) of fuel is a main problem of the nuclear re-
actor theory. In conventional presentation consideration
of critical problem has been confined by reactors of the
classical geometry (a sphere, an unrestricted cylinder and
a plate) without neutron reflector and with it observing
the central symmetry. Moreover, its was historically de-
termined that external arrangement of reflector met the
existing at that time requirements of nuclear reactors.

The influence of external reflector has been conside-
red only in one-group approximation for the extreme cas-
es of its diffusion characteristics: for vacuum and black
body). Such an approach permitted the significant simpli-
fication of mathematical problem statement (the diffusion
equation was excluded). The results of solving the critical
problem in one-group approximation found practical ap-
plication in calculation of particular types of reactors (e.g.
heavy-water reactor) and in the theory of central absorber.

More than half-century experience of nuclear reac-
tor operation has revealed the appropriateness of appli-
cation of central or external reflectors. For example, in
high-temperature reactor with helium heat-transfer
medium GT-MGR the reflector is a construction made
of graphite blocks of different form [1]. It includes not
only conventional upper, lower and lateral reflectors,
but also central one.

The reactor core GT-MGR consists of prismatic
graphite blocks and, hence, it possesses less thermal re-
sistance in comparison with the core of spherical heat
emitting elements. The presence of central graphite re-
flector increases storage capacity of the reactor and,
hence, decreases the heating rate of the core at impair-
ment of heat-transfer medium. Simultaneously, such
circular composition provides better equalization of en-
ergy distribution over core and, hence, less specific
power of energy-release and fuel temperature.

In the reactor IRT-T involved the application of not
only external reflector, but also internal one is explained
by the necessity of increase in average density of neu-
tron flux [2, 3]. For the same purpose the choice of be-
ryllium as a reflector material is used.

Distribution of slow neutron flux density in general
case is performed by numerical methods in multigroup
approximation and in multidimensional statement. The
purpose of the work is to obtain analytical estimation of
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influencing central reflector by the example of IRT-T
reactor and taking into account the taken assumptions is
rather of methodical nature.
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Fig. 1. Scheme of IRT-T reactor element location

In the scheme core of the IRT-T reactor presents a
rectangle with the sides of 6x8 square section cells. In
the periphery reflector beryllium blocks are arranged in
one row, in the centre there is a beryllium neutron trap
(internal reflector) including 4 cells, the rest of cells oc-
cupy heat emitting fuel assembly, washed by light-water
heat-transfer medium. On the whole the element arran-
gements along the long side of the rectangle with respect
to the symmetry axis have the view presented in fig. 1,
where H,/2 are the boundaries of corresponding zones.

The problem on the reactor with internal and external
reflectors will be solved in one-group and diffusion-grow-
ing approximation, considering the core a homogeneous
zone and in the form of unrestricted plate for simplicity.

One-group approximation

The trend is to describe the distribution of neutron flux
@:in the core, in the internal and external reflectors in one-
group approximation with the following wave equations:

AD, + 32D, =0, (D)
A®D, - 3,0, =0, 2)
AD, — 170, =0, @)

where y,, x,, x; are material parameters of the core me-
dium, internal and external reflector.

Let us use the following boundary conditions to sol-
ve the equations (1-3):
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x=0 V®,(0)=0, (4)
X=H,[2  @,(H [2)=D(H,/2), ®)
x=H/2 DNV®,(H [2)=DV®,(H/2), (6)
x=H,/2 ®(H,/2)=D,(H,/2), 7
x=H,/2 DV®(H,/2)=DNV®,(H,[2), (8)
x=H,/2 @(H,[2)=0, 9)

where D, is the diffusion coefficients.

Application of external reflector of thickness 7 dec-
reases neutron leakage and effects a saving in the core
equal to efficient additive [4]

0, = L arctg L?Xl th(}(3T):| .
1 3A3
Simplify the problem (1-9), for this purpose intro-
duce the effective boundary condition

x=H,[2+8,=H, /2 ©(H,[2)=0. (10)

Thus, the problem on critical state is determined by
the equation system (1, 2, 4—6) and (10).

Solution of the wave equations (1) and (2) are
known and has the view:

@, (x) = Csin(x,x) + C,co8( x,x),
D, (x) = C;sh(y,x) + C,ch(x,x).

Meeting the boundary conditions by these solutions,
we obtain the system of algebraic equations. After dec-
reasing the order of the system up to two and then ha-
ving got rid of the constants, we obtain the critical equ-

ation for the reactor in the form of unrestricted plate
with central reflector:

Dz%zth(ﬂh Hl/z) :_D1%1Ctg(ll(H3¢/2_Hl/z))- (11)
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Fig. 2. Neutron flux distribution over the core and the central
reflector

At the specified thickness of the internal reflector
and known material characteristics one can find the
critical value of the core dimension from this equation.

The initial system of algebraic equations allows us to
find out the expressions of spatial distribution of neutron

flux density just with the accuracy of some constant C. To
find the laws of neutron distribution in the core and the
reflector in the explicit form let us set up the condition:

x=0 ®,0)=0"=f(N,) (12)
as a result we obtain the distribution laws [6]:
—h* Sin(ll(H3/2—x))
@, (x)=d ch(y, H1/2) sin(xl(H3/2—H1/2))’ (13)
@,(x) =@ ch(y,x). (14)

If we take that @'=1, then the solutions (13, 14) ha-
ve the view presented in fig. 2.

Two-group approximation

The more high diffusion-growing approximation
includes slowing down fast and spreading slow neu-
trons. Let us use the effective boundary condition too.
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Fig. 3.  The scheme of two-group processes 7

According to the scene of two-group processes
(fig. 3) the critical problem in the axil-symmetrical Car-
tesian statement includes the following equations of
neutron balance for:

« core H,/2<x<H,/2:

DA®, -%,®, +k2,,D,/¢p=0, (15)
DAD, ~% @, +¢Z,®, = 0; (16)

+ internal reflector 0<x<H,/2:
D, AD, -3, &, =0, (17)
D, A®, -3 @, +3, @, =0. (18)

The boundary conditions are presented in the form:

x=0 AD, =0, AD, =0, (19)
x=H/2 @ (H/2)=0(H/)2),
Dlrv®1r(H1/2)=D1V®1(H1 /2), (20)
x=H1/2 (DZI(H1/2)=<D2(H1/2),
D,V ®, (H,[2)=D,V®,(H, [2), (21)

"
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x=H,[2  ®(H,[2)=0, O,(H,/)=0, (22)

where X, ;, X, are the macroscopic sections of absorbing
slow and withdrawal of fast neutrons, sm™; k., ¢ are the
coefficients of infinite media propagation and probabi-
lity of avoiding resonant capture.

The laws of neutron flux distribution
in the core and the reflector

As the equations (15) and (16) are symmetrical with
respect to the flux, it gives grounds to suggest the flux is
estimated by the wave equations with one and the same
wave number [4, 5]:

AD, +a’D, =0, AD,+a’d,=0, (23)
from which express the Laplacians in the form
AD, =-a’D,, AD,=-a’D,

and substitute them into (15) and (16). As a result we obtain:
(Otle +X,)0, = kooza,T®2 /@,
(o 2D2 +2,,)0, =X, d,.

After division of one equation by the other and in-
troduction of length square of slow neutron diffusion
[’=D,/%, ;and their age 7=D,/%,, after simple transfor-
mations we obtain:

k, =(1+a*)-(1+a’r).
This quadratic equation with respect to o has two

roots: o’=p? and a,’=—v?, where y* and —v* are nume-
rical constants, similar to the material parameters [3]:

, 1(1 1 11 1Y) k-1
a =—=| =+ |+ —+=| +—=—
2\t L 4\ v L Tt-L
, 1(1 1 11 1Y) k-1
0, =—| =+ |+, || —+ | +=F=¢
2\t L 4\t L T-L
D1 (24)
=q +*+72.
T

Thus, the equation (23) for fast neutrons disintegra-
tes into the equations:

AD, +p’D, =0, AD —vD =0
and its solution is a linear combination of the solutions
of the last equations:
D,(x) = Asin(ux)+ A,cos(x) +
+4,sh(vx)+ A4,ch(vx). (25)
Similarly we obtain the general view of the solution
for slow neutrons:
@,(x) = B ;sin(ux)+ B,cos(ux) +

+B sh(vx)+ B ch(vx), (26)

where B=S4, but S; are the corresponding coupling co-
efficients.

In the diffusion equation for fast neutrons in reflector
(17) the generation term of fast neutrons is absent as the

72

environment is not multiplying, therefore the equation sy-
stem (17, 18) ceases to be symmetric and disintegrates in-
to two solved in sequence equations. This homogeneous
equation for fast neutrons we write down in the form:

AD, — ﬁlzr@lr =0,

where 81=%,,/D;. The general solution of this equation
is known, it can be written down in the form:
@, (x) = £ -sh(B, x) + ;- ch(B, x).

As the symmetry condition is to be met (19), it fol-
lows that /=0, and the solution has the form:

®,,(x) = F, -ch(f, x)= Fch(B,x).  (27)

Slow neutron flux in reflector is determined by the

equation (18). First, find out the solution of homogen-
eous part of this equation:

Dz;-A‘Dz(; _za,Tr¢2()J‘ =0
or by introduction of the parameter §3=%,/D,=1/L3
ADS, - B, @3, = 0.
Similarly, due to the condition (19), its solution is
determined by the dependence:
@;,(x) =G, -ch(B,, x) = G -ch(B, x),

but the solution of non-homogeneous equation (18)
can be written down in the form:

@, (x) =G ch(B, x)+ 5, F -ch(B, x).  (28)
For the sake of convenience rewrite the general so-
lutions of the equations (15—18) in the form:
D (x)=4X +A4,X,+A4Y,+4,Y,,
D,(x)=8,4,X, +S,4,X, +S,4,Y, +S,4,Y,
@, (x)=FX,,
@, (x)=GX,, +S FX

(29)

Ir>

where A4, F, G are the constants defined from boundary
conditions; the functions X;=sin(ux), X;=cos(ux),
Yi=sh(vx), ,=ch(vx), X, =ch(B,x), X,=ch(B,x); S, 5,
S;, Sy, S, are coupling coefficients.

Search for coupling coefficients

The procedure of coupling coefficients determina-
tion is described in [4, 5] in details, let us show it by the
example of determining the value S§,. Substitute the he-
terogeneous part of the solutions @, (x)=FX,, and
@, (x)=S.FX, in the equations (18):

DZVSI‘FAXIV _za,TrSrFXlr +ZR,VFX11‘ = 0

Taking into consideration AX,,=X,,/t we obtain
D, S.FX, /t-%, .S FX, 6 +%,, FX, =0,

a,Tr

hence
>

R,r 2"R rTV
S, = Lo SR (30)
z:a,Tr _D2r /Tr 2a,Tr (Tr _L r)

Similarly the other coupling coefficients are deter-
mined:
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S =5,-——Px_____ % (31)
b +a’D, B (I+all)
S3=S4=¢2 (32)
2, (1-0a; %)

The expressions (30—32) for the coupling coeffici-
ents remain the same [4, 5], which is explained by the
identity of the original equations.

Criticality condition

To determine constants in general solution of the
equations (29) meet their boundary conditions (20—22):

ALX, T+ A,[X, ]+ 4[]+ 4,[%,] = FLX, ],
S, A LX ]+ 8,4,0X,1+ S, 4,11+ 8,4, 1%, ] =

= 5,F[X, ]+GLX,, ],

D A[VX,]+D,A,[VX,]+D.A,[VY,]+
+D,4,[VY,]=D, FIVX, ],
S,D,4,[VX,]+S8,D,A4,[VX,]+5,D,4,[VY, ]+
+8,D,4,[VY,]=D,S,F[VX, ]+ D, G[VX, ],
A (X)) + A, (X,)+ A, () + 4, (%) =0,
S4,(X)+84,(X,)+8,4,(Y)+5,4,(%,)=0.

(33)

It is recalled that we have already used the boundary
conditions (19), it permitted us to obtain the improved
solutions (27) and (28).

Square brackets are used here to identify the functions
and their derivatives at the boundary of the core and re-
flector, round ones are at the effective core boundary.

The system (33) has a nontrivial solution only in the

case if its determinant is equal to zero:
A=

[x,] X, %] %] [x,] 0

SIX] SIX] SIE) 5,5 -5[X,] -1x,]
_IDIVX]  DIVX,] D[VY] D[VY]  -DJ[VX,] 0

TIS,D,[VX,] S,D,[VX,] S,D,[VY] S,D,[VY,] -D,S.[VX,] —-D,[VX,] (34)
(X)) X) ) 1) 0 0

S,(X,) S(X,) ST S(%) 0 0

=0.

The system determinant (34) at specified thickness
of the internal reflector and known material characteri-
stics (the criticality condition) allows us to find the ef-
fective value of the core critical size. The reflector eco-
nomy is determined by the known formula [4] and
makes possible to find quaesita of critical size.

Determination of constants
in the equations of neutron flux distribution

To calculate the flux distribution in the core and the
reflector it is necessary to know critical size of the core
and constants A4,, 4,, A;, A,, Gand F, the equation (29).
As the number of unknowns increases the number of
initial equations, the distribution laws can be found on-
ly in the implicit form with the accuracy up to a defini-
te constant. To state the laws of neutron distribution
over the core and the internal reflector in the explicit
form let us use the additional condition:

(D min

x=0 @, (0)=d.",
whence it follows that
@™ = F.ch(B, -0)=F.
The other constants take the form:
4, = AN 1= AL ] A )
[X]

@'“'"[“[X“]_J A[[VYI]_J A,V aly,])
— — a
_ o ptvx,))” Tlam) TR
2 [VX,]-alX,]

OB -S| ~O(65-08)

A — 1r 1 4~3 A — 51&2)
’ 62 ) (5263 _5352)

4,[%,]

>

s

>

where
6, =PIX,]-((VX,]-a[X,])-(a[ X, ]-
—pIVX, D-((X,)- BLX,]),
8, =((Y)-BIMD-([VX,]-alX,]) -

-([VY]-al1])-(X,)- BLX,)D),

5, =(1,)-BIL,D-(VX,]-a[X,]) -

(VL ]-a[L])- ((X,) - BLX, ],

S =SBLX, ]-([VX,]-alX,]) -
—(a[X,,1-p[VX, D (S,(X,)- S, BLX,]),
&, =(S;(X) =SB D-([VX,]-alX,]) -

—([VY]1-alr]- (S, (X,) =S, B[X, ],
& =5 =SB D-([VX,]-a[X,]) -
—([VY]-alL,])- (S, (X,) =S, B[X,]),
=D, /D, a=[VX][X], B=X)/[X|]

,_,n_a

Discussion

The solution check is carried out by the example of
IRT-T reactor, the core of which is constructed of
eight-tube heat-emitting assemblings. At the end of the
procedure at the power 12 MW the reactor has the fol-
lowing core characteristics: 7t=45,831 sm?
D=1,632 sm, D,=0,292 sm, X,=0, 10352 sm™',
(p—O 973 k= [ 3463 and the reflector; 7,=92,037 sm?,
D,=0,538 sm, D,=0,373 sm, X,=0,00873 sm*‘,
1?=42,745 sm’. Plotting the graph of neutron flux di-
stribution it is convenient to accept and then in our case
the coefficients are equal to: A4,=0,472388,
A,=2,528782, A,=85,387631, A,=—85,387631, F=1,
G=-0,57191. To determine the average flux of slow
neutrons over the core one needs to find effective addi-
tive of the reflector. The results of solution in MathCAD
medium are presented in fig. 4.

It is conventional to estimate reflector efficiency not
only by the core economy, but also by the change of re-
lation of the slow neutron flux to its maximum value.
For reactor without reflectors it is known [4, 5] and
equals to 0,637. If we apply the external beryllium re-
flector, the relation amounts 0,939.
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Fig. 4.  Distribution of neutron flux
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A new algorithm of parameter identification of equivalent circuit for electrical charge replacement is suggested. The approach is based
on the solution of integral equation of the | type with respect to the function of indicial admittance, by which then determination of re-
placement circuit parameters is carried out. Application of smoothing splines and original regulating algorithm including kernel setting
error of integration equation permits to obtain a stable algorithm of parameter identification. The investigation of algorithm shows high

calculating efficiency and sufficient accuracy of parameter identification.

1. Introduction

One of the most interesting from the physical point of
view and practically important trends in different fields of
engineering is barrier discharge. In particular, barrier
discharge is used in water purification, plasma technolo-
gy, etching, etc. However, a strong spatial irregularity and
short durability of physical processes taking place in bar-
rier discharge make it difficult to study this phenomenon.

In characteristic description of electric discharge (bar-
rier discharge, in particular) their description as objects of
electric circuit is widely used [1]. The bases of such appro-
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aches are the replacement of electrophysical phenomena
by the phenomena taking place in electric circuit consi-
sting of definite electric elements (resistance, capacity,
and inductance). Such electric circuit will be called an
equivalent circuit of electric discharge replacement.

Investigating the discharge physics voltage U(7) and
current /(7) in circuit with discharge gap are available for
measuring. Therefore, there appears the problem of de-
termination of electric discharge replacement circuit
parameters with registered function values U(7), I(f). In
fact, we have the problem of identification of replace-
ment equivalent circuit.





