УДК 550.93:552.3

⁴⁰Ar/³⁹Ar возраст щелочных пород верхнеамгинского массива (Алданский щит, южная якутия)

Пономарчук Антон Викторович¹,

antponomar@gmail.com

Прокопьев Илья Романович^{2,1},

prokop@igm.nsc.ru

Дорошкевич Анна Геннадьевна¹,

anna-dor@yandex.ru

Егитова Ирина Валерьевна^{2,1},

egitiv@mail.ru

Кравченко Александр Александрович^{3,4},

freshrock@yandex.ru

Иванов Алексей Иванович4,

Leps 2002@mail.ru

- ¹ Институт геологии и минералогии им. В.С. Соболева СО РАН, Россия, 630090, г. Новосибирск, пр. Коптюга, 3.
- ² Новосибирский государственный университет, Россия, 630090, г. Новосибирск, ул. Пирогова, 2.
- ³ Северо-восточный федеральный университет им. М.К. Аммосова, Россия, 677000, г. Якутск, ул. Белинского, 58.
- ⁴ Институт геологии алмаза и благородных металлов СО РАН, Россия, 677098, г. Якутск, пр. Ленина, 39.

Актуальность исследования обусловлена необходимостью расширения ресурсной базы полезных ископаемых, в том числе и золота. Крупные ареалы щелочного магматизма, такие как Алдано-Становой щит, представляют особый интерес, так как часто со щелочными породами ассоциируют золоторудные месторождения, в том числе крупные и гигантские. Верхнеамгинский массив расположен в Верхнеамгинском рудном районе Алдано-Станового щита, который, в свою очередь, входит в состав Чаро-Алданской металогенетической зоны, протянувшейся более чем на 700 км с запада на восток. Характерной особенностью Верхнеамгинкого рудного района является его приуроченность к Амгинской субмеридиональной структурной зоне тектонического меланжа, отделяющей Центрально-Алданский составной террейн с востока от расположенных к западу и югу от нее соответственно Западно-Алданского и Тындинского осставных террейнов.

Цели: определить основные типы магматических пород Верхнеамгинского массива, изучить особенности строения и состава и выяснить время внедрения различных фаз массива; сравнить полученные результаты с имеющимися геохронологическими данными по мезозойскому магматизму Алданского щита.

Методы исследования: петрографические исследования и ⁴⁰Ar/³⁹Ar датирование методом ступенчатого прогрева по монофракциям флогопитов.

Результаты. В результате петрографических исследований показано, что основные фазы мезозойского щелочного магматизма в пределах Верхнеамгинского массива представлены лейкократовыми сиенитами и дайками мезократовых лампрофиров (минетт). Результаты ⁴⁰ Ar/⁹⁹ Ar датирования показали, что образование массива происходило в несколько этапов: (1) 129,1±2,5 млн лет внедрение сиенитов; (2) 117,7±3,4 млн лет внедрение даек лампрофиров. Мезозойский магматизм, проявленный в Верхнеамгинском районе показывает сходные возрастные рубежи с магматическими процессами, проявленными на Алданском щите в мезозойскую эпоху.

Ключевые слова:

Алдано-Становой щит, Алданский щит, Верхнеамгинский массив, Верхнеамгинский рудный район, петрография, мезозой, щелочные породы, Ar/Ar датирование.

Введение

Мезозойская тектономагматическая активизация Алдано-Станового щита, обусловленная взаимодействием его с соседними подвижными структурами Монголо-Охотского и Верхояно-Чукотского складчатых областей, сформировала обширный ареал распространения щелочных изверженных пород, отличающихся исключительным многообразием состава, форм проявления и условий залегания. Специфической особенностью мезозойского магматизма на Алданском щите является его калиевый уклон, однако отмечаются породы калийнатриевого ряда. Пространственно мезозойский магматизм проявился в ряде локальных районов в пределах Алдано-Становой субмеридиональной структуры. Именно с мезозойскими щелочными комплексами пород в пределах выделенных районов на Алданском щите связывают образование промышленных рудных объектов и крупных месторождений золота, урана, молибдена и платиноидов [1–5 и др.].

Современные геодинамические данные показывают, что формирование мезозойского магматизма в пределах Северо-Азиатского кратона связано с влиянием подлитосферного «горячего поля мантии» в виде интенсивного рифтогенеза и внутриплитной плутоно-вулканической деятельности, которые сопряжены с формированием эпиконтинентальных прогибов, впадин и грабенов [6, 7]. Причиной проявления мезозойской активности на Алдано-Становом щите считается дегидратация субдуцирующей под континент океанической плиты и последующий апвеллинг астеносферного вещества, которые привели к деформациям в литосфере и проявлению многоэтапного плюмового магматизма, отвечающего за перенос полезных рудных компонентов и формирование крупных рудных месторождений [8, 9]. Также есть исследования, в которых предполагается существование мантийного плюма и Центрально-Алданский район является его центром [10].

В пределах Алданской структуры Алдано-Санового щита принято выделять Чара-Алданскую металлогеническую зону, состоящую из нескольких локальных рудных районов, в которых сосредоточены древние протерозойские россыпные и мезозойские коренные золотоносные объекты (с запада на восток): Верхнетокинский рудный район, Верхнеамгинский, Центрально-Алданский, Нимныро-Эвотинский, Тыркандинский, Ломамский, Кет-Капский и др. [2, 3, 11 и др]. Наиболее изученным в плане петрологии и рудоносности щелочных мезозойских комплексов является Центрально-Алданский рудный район, щелочные комплексы которого представлены породами монцонит-сиенитовой, лейцитит-щелочно-сиенитовой, щелочно-базитовой, гранит-гранодиоритовой формаций [3-5, 12]. Исследуемый Верхнеамгинский золотоносный район изучен крайне слабо ввиду труднодоступности территории. До последнего времени здесь отмечались только россыпные золотоносные объекты. В 2012-2013 гг. при проведении опережающих геолого-геофизических и геохимических работ геологами ГУГГП РС (Я) «Якутскгеология» в Верхнеамгинском рудном районе были выявлены линейные и площадные геохимические аномалии золота, приуроченные к проявлениям мезозойского сиенитового магматизма в зоне градиента верхнеамгинского гравитационного минимума [13]. Заверенные аномалии установили зоны сульфидизированных пород с промышленным содержанием золота. Сиениты, к которым приучена рудная минерализация, относятся к щелочноземельной серии и являются высококалиевыми породами, также отмечается развитие лампроитов. Сиениты образуют штоки, силы, лакколиты, а для лампрофиров характерно залегание в виде даек, силлов и эксплозивных брекчий. По имеющимся литературным данным возраст сиенитов Верхнеамгинского массива составляет 140 ± 7 млн лет (Rb-Sr метод, [14]). Однако, учитывая, что эта датировка получена построением изохроны по различным валовым пробам как магматических, так и метасоматических пород исследуемой площади, рассматривать ее можно только в качестве оценочных данных.

В данной работе приведены результаты петрографического изучения основных разновидностей щелочных магматических пород Верхнеамгинского массива, а также первые данные Ar/r датирования сиенитов и лампрофиров. Фактический материал для исследований предоставлен геологами ГУГГП РС (Я) «Якутскгеология» и представляет собой керн скважин, а также образцы штуфных проб, отобранных при современных горно-геологических работах на территории Верхнеамгинской рудной площади (рудный участок Хатырхай).

Геологическое строение района

Верхнеамгинский щелочной массив расположен на территории одноименного золотоносного района Алданского щита в Южной Якутии (рис. 1). Географически территория Верхнеамгинской рудной площади находится в 120 км к западу от г. Алдана, в северо-западной части Алданского нагорья, в верхнем течении бассейна р. Амга (приток р. Алдан). Территория исследуемого района по современным тектоническим данным входит в состав Амгинской субмеридиональной структурной зоны тектонического меланжа, отделяющей Центрально-Алданский составной террейн с востока от расположенных к западу и югу от нее соответственно Западно-Алданского и Тындинского составных террейнов [15]. В строении Амгинской зоны участвуют архейские комплексы амфиболитовой и эпидот-амфиболитовой фаций метаморфизма, раннепротерозойские ортогнейсовые и парагнейсовые толщи субгранулитовой -гранулитовой фации, а также фрагменты архейских и раннепротерозойских зеленокаменных поясов и дифференцированные плутоны ультраосновных и основных пород.

Структурная позиция Верхнеамгинского золотоносного района характеризуется многоярусным строением, определяющим три главных типа геоструктур региона: нижнедокембрийский фундамент, венд-нижнекембрийский осадочный чехол и мезозойские участки активизации (рис. 1). Архейские структуры фундамента с несогласием перекрыты венд-нижнекембрийским платформенным чехлом морских глинисто-карбонатных осадков. На отдельных участках в северной части района, на вершинах водоразделов сохранились небольшие мощности мезозойских терригенных отложений юрской (юхтинская свита) и кайнозойской систем.

Основной объем магматических образований связан с платформенным этапом мезозойской тек-

- Рис. 1. Геологическая схема Верхнеамгинского массива (данные [11], с дополнениями авторов): 1 Четвертичные отложения: современные аллювиальные отложения, пески, галечники, валунники; 2 Юрские отложения: песчаники, гравелиты, конгломераты; 3 Венд-кембрийские отложения: известняки, доломиты, мергели; 4 Архейские образования: граниты; 5 Биотитовые и биотит-амфиболовые гнейсы, гранито-гнейсы, кварциты. Раннемеловые интрузии: 6 штоки эгириновых гранитов; 7 дайки и силлы лампрофиров; 8 штоки, лакколиты, силлы биотит-пироксеновых, амфибол-пироксеновых и амфиболовых сиенитов и сиенит-порфиров; 9 лакколиты и штоки монцонитов; 10 дайки и штоки щелочно-основных и ультраосновных пород: шонкиниты, пироксениты и сиенит-порфиры; 11 разломы
- Fig. 1. Geological outline of Verkhneamginskiy massif ([11], complemented by authors): 1 Quaternary deposits: modern alluvial deposits, sands, pebbles, boulders; 2 Jurassic deposits: sandstones, gravel, conglomerates; 3 Wend-Cambrian deposits: limestones, dolomites, marls; 4 Archean Formations: granites; 5 Biotite and biotite-amphibole gneisses, granite-gneisses, quartzites. Early Cretaceous intrusions: 6 stems of aegirine granites; 7 dykes and sills of lamprophyres; 8 stocks, laccoliths, sills of biotite-pyroxene, amphibole-pyroxene and amphibole syenites and syenite-porphyries; 9 laccoliths and stocks of monzonites; dikes and stocks of alkaline-basic and ultrabasic rocks: shonkinites, pyroxenites and syenite-porphyries; 11 fractures

тоно-магматической активности. Мезозойские изверженные породы на современном эрозионном срезе представлены крупным телом и множеством штоков сиенитов, а также примыкающими к нему с юга штоками монцонитов. Встречаются отдельные тела щелочных гранитов. Дайковый комплекс представлен силами и дайками лампрофиров. Дайки лампрофиров имеют преимущественно северозападное и северо-восточное направление, соответствующее преобладающим направлениям тектонических разломов. Со щелочными интрузиями связаны зоны сульфидизации, окварцевания и скарнирования, сопровождаемые золоторудной минерализацией [13].

Тектоническая характеристика региона определяется разломами субмеридионально-северовосточного простирания, входящими в систему Амгинского глубинного разлома (структурного шва) [15]. Разломы северо-восточного и северо-западного простирания формируют диагональные разрывные структуры, наложенные на зону Амгинского глубинного разлома, или органически входят в его структуру, наследуя его тектонику. Заложенные в докембрийское время разломы этой системы неоднократно подновлялись, особенно активно в мезозое, когда была сформирована блоковая структура района, интенсивно проявлен магматизм и связанная с ним гидротермальная деятельность.

Методы исследования

Петрографическое изучение щелочных пород Верхнеамгинмкого массива проводилось с использованием оптического микроскопа Olympus BX51 с фотокамерой Infinity 2.

⁴⁰Ar/³⁹Ar датирование проведено по мономинеральным фракциям пород - флогопитов из сиенитов и даек лампрофиров. Облучение проб было проведено в кадмированном канале научного реактора ВВР-К типа в Научно-исследовательском институте ядерной физики (г. Томск). Градиент нейтронного потока за период облучения не превышал 0,5 % в размере образца. В качестве монитора используется стандартный K/Ar образец мусковит MCA-11 (ОСО No 129-88), подготовленный Всесоюзным научно-исследовательским институтом минерального сырья Министерства геологии СССР (ВИМС) в 1988 г. Для его калибровки в качестве ⁴⁰Ar/³⁹Ar монитора использовались международные стандартные образцы мусковит Bern 4m и биотит LP-6 [16]. По результатам калибровки в качестве возраста мусковита МСА-11 было принято среднее, которое составило 311,0±1,5 млн лет [17]. Значение полной постоянной распада 40К, в соответствии с [18], принималось равным 5,543·10⁻¹⁰ год⁻¹.

Холостой опыт по определению ⁴⁰Ar (10 мин при 1200 °C) не превышал 5 10⁻¹⁰ нс·м³. Очистку аргона производили с помощью Ti- и ZrAl-SAES-геттеров. Дополнительная очистка осуществлялась с помощью кварцевого аппендикса, погруженного в жидкий азот. Изотопный состав аргона измерялся на масс-спектрометре Noble gas 5400 фирмы «Микромасс» (Англия). Для коррекции изотопов ³⁶Ar, ³⁷Ar, ⁴⁰Ar, полученных при облучении Ca, K, использовались следующие коэффициенты:

(³⁹Ar/³⁷Ar)Ca=0,000891±0,000005,

 $({}^{36}\text{Ar}/{}^{37}\text{Ar})$ Ca=0,000446±0,000006,

 $({}^{40}\text{Ar}/{}^{39}\text{Ar})\text{K}=0,089\pm0,001.$

Особое внимание уделялось контролю фактора изотопной дискриминации с помощью измерения порции очищенного атмосферного аргона. Среднее значение отношения ⁴⁰Ar/³⁶Ar на период измерений составило 295,5±0,5. Нагревание образца происходило в кварцевом реакторе, помещенном в резистивную печь. Датирование производилось методом ступенчатого прогрева. Контроль температуры осуществлялся посредством хромель-алюмелевой термопары. Точность регулировки температуры составляла ±1 °C.

Исследования проведены в лаборатории аналитической геохимии № 775 Института геологии и минералогии СО РАН (ИГМ СО РАН, г. Новосибирск).

Петрография щелочных пород

Петрографические исследования проведены для основных разновидностей щелочных пород Верхнеамгинского массива – сиенитов и даек лампрофиров, для которых были получены Ar-Ar геохронологические данные.

Сиениты – лейкократовые породы порфировидной структуры, структура основной массы скрытокристаллическая; текстура массивная (рис. 2). Вкрапленники представлены флогопитом, калиевым полевым шпатом, амфиболом и плагиоклазом; минералы основной массы – флогопит и полевые шпаты. Второстепенными и акцессорными (~5-7 %) являются: апатит, титанит, кальцит, рудный минерал (магнетит), эпидот и хлорит.

Вкрапленники биотита (~10 %) образуют удлиненные пластинчатые кристаллы размером 1-2 мм. Амфибол (~5 %) представлен идиоморфными призматическими зернами размером 1-1,5 мм. Местами амфибол замещается хлоритом. Вкрапленники полевых шпатов (~10 %) образуют идиоморфные призматические кристаллы размером 0,5-1 мм. По зернам плагиоклаза развивается карбонат, редко эпидот. Идиоморфные зерна апатита и титанита слабо удлиненные, апатит коротко призматический, размеры зерен минералов 0,05-0,25 мм.

В породе иногда отмечаются округлые вкрапленники (ксенолиты, 1-2 см) породы основного состава (?), сложенные практически мономинеральным амфиболом (роговая обманка), с редкой вкрапленностью плагиоклаза и апатита.

Дайки лампрофиров представляют собой тонкозернистую породу темно-серого цвета с порфировыми вкрапленниками флогопита, клинопироксена и реже оливина (рис. 2). Порода в шлифах полнокристаллическая; структура породы порфиро-

Рис. 2. Фотографии шлифов в скрещенных николях из пород: а, б) даек лампрофиров, образцы 5105 и 13070 соответственно; в, г) щелочных сиенитов, образец 16081. Сокращения минералов по [19]

Fig. 2. Photos of polished sections in crossed nicols of rocks of: a, 6) dikes of lamprophyres, samples 5105 and 13070 consequently; b, r) alkaline syenites, sample 16081. Mineral reductions according to [19]

видная, структура основной массы офитовая; текстура массивная. Минералы основной массы представлены полевым шпатом и флогопитом. Вторичные минералы (3–15 %): хлорит, серпентин, амфибол, карбонат, эпидот. Акцессорные минералы – апатит, титанит. Индекс темноцветности породы меняется от лейко- до мезократового.

Вкрапленники биотита (~10 %) образуют удлиненные пластинчатые кристаллы размером 1–5 мм. Клинопироксен (~3–5 %) представлен идиоморфными призматическими зернами размером в среднем 1–2 мм. Редкие вкрапленники идиоморфных зерен оливина (~1 %) размером 0,02–1 мм содержат микровключения зерен апатита. Оливин и клинопироксен замещаются хлоритом и серпентином. По краю зерен оливина отмечается цепочка зерен рудного минерала (магнетита).

Основная масса породы сложена полевыми шпатами (калиевый полевой шпат и плагиоклаз) и хаотично расположенными иголками и лейстами флогопита. Магнетит, титанит, удлиненно-призматические кристаллы апатита равномерно распределены по породе. Зерна кальцита обрастают каймой, сложенной чешуйками флогопита. Карбонат находится также в виде скрытозернистого агрегата, равномерно распределённого по породе, образует изоморфные округлые скопления, замещает клинопироксен.

⁴⁰Ar/³⁹Ar датирование

По результатам ⁴⁰Ar/³⁹Ar геохронологических исследований получен возрастной спектр флогопита из даек лампрофиров (Обр. 13070). Он состоит из семи ступеней (рис. 3). Четыре последние ступени объединяются в возрастное плато. Объем выделенного в рамках возрастного плато ³⁹Ar достигает 90 %. Средневзвешенный возраст образования минерала по возрастному плато составляет 117,7±3,4 млн лет (таблица).

⁴⁰Ar/³⁹Ar спектр флогопита из сиенита (Обр. 16081) состоит из шести ступеней (рис. 3). Четыре последние ступени удовлетворяют критерию возрастного плато и определяют средневзвешенный возраст исследуемого образца величиной 129,1±2,5 млн лет (таблица). Количество выделенного ³⁹Ar в рамках возрастного плато соответствует 95 % от общего объема ³⁹Ar, выделившегося из образца в ходе эксперимента.

Таблица.	Результаты Ar/Ar датирования пород Верхнеамгин-
	ского массива. Ошибки указаны с интервалом $\pm 2\sigma$
Table.	Ar/Ar dating results of Verkhneamginskiu massif rock.

able. Ar/Ar dating results of Verkhneamginskiy massif rock. Error interval is $\pm 2\sigma$

T, °C	$^{40}\mathrm{Ar}/^{20}\mathrm{Ar}$	±	$^{st}\mathrm{Ar}/^{st}\mathrm{Ar}$	±	$^{87}\mathrm{Ar}/^{39}\mathrm{Ar}$	±	[‰] Ar/ [∞] Ar	±	Выделенный Cumulative ³⁹ Ar, %	Возраст (млн лет) Age (Ma)	±			
13070 флогопит (лампрфир) (J=0,004577±0,000055, интегральный возраст														
113,5±3,8 млн лет)														
200	13070 phiogopite (iamprophyre) (integral age 113,5 \pm 3,8 Ma)													
500	99,1	7,3	0,20	0,08	3,9	1,3	0,27	0,08	0,8	144,1	167,2			
625	50,7	0,4	0,06	0,03	1,6	0,4	0,149	0,008	2,7	55,4	18,9			
750	27,6	0,2	0,03	0,01	0,8	0,2	0,079	0,008	9,3	35,6	19,7			
870	21,70	0,06	0,022	0,004	0,33	0,07	0,024	0,003	25,2	116,4	5,9			
970	20,92	0,04	0,024	0,002	0,04	0,02	0,022	0,002	41,9	114,3	4,6			
1070	19,90	0,08	0,007	0,006	0,2	0,1	0,017	0,004	60,7	118,1	8,5			
1170	18,19	0,05	0,023	0,002	0,04	0,04	0,009	0,003	100,0	124,8	6,0			
16081 флогопит (сиенит) (J=0,004526±0,000054,														
интегральный возраст 127,9±2,5 млн лет)														
16081 phlogopite (syenite) integral age 127,9±2,5 Ma)														
550	288,0	22,7	0,14	0,08	0,3	0,2	0,77	0,10	0,4	435,0	152,7			
700	35,8	0,2	0,043	0,006	0,14	0,02	0,092	0,006	6,5	69,9	13,1			
900	20,80	0,03	0,0202	0,0004	0,010	0,003	0,017	0,001	35,4	124,8	3,0			
990	22,86	0,04	0,0212	0,0007	0,008	0,001	0,021	0,002	55,1	130,6	4,4			
1080	23,35	0,05	0,0192	0,0009	0,046	0,004	0,019	0,002	74,5	138,9	4,9			
1180	21,11	0,04	0,021	0,001	0,015	0,004	0,016	0,002	100,0	129,6	3,9			

- Рис. 3. Результаты ⁴⁰Ar/³⁹Ar датирования мономинеральных фракций флогопита из даек лампрофиров (Обр. 13070) и флогопита из сиенитов (Обр. 16081). Ошибка указана с интервалом ±2σ
- Fig. 3. Results of "^Ar/³⁹Ar dating of monomineralic phlogopites fractions from lamprophyre dike (13070) and from syenites (16081). Error interval is $\pm 2\sigma$

Обсуждение результатов

По результатам ⁴⁰Ar/³⁹Ar датирования было определено время кристаллизации сиенитов и даек лампрофиров Верхнеамгинского щелочного массива; оно составило 129,1±2,5 и 117,7±3,4 млн лет, соответственно. Таким образом, отчетливо выделяется две стадии магматического этапа формирования щелочных пород мезозойского возраста в пределах Верхнеамгинской рудной площади, при этом временной интервал между стадиями составляет около 10 млн лет.

Полученные возрастные характеристики согласуются с магматическими процессами, проявленными на Алданском щите в мезозойскую эпоху. Так, например, на крайнем северо-западе Адланского щита расположен Мурунский мезозойский щелочной комплекс, состоящий из Большемурунского и Долгадинского щелочно-сиенитового интрузивов и Маломурунского массива. Результаты Ar/Ar датирования полевого шпата и тинаксита Маломурунского массива составляют 134,1±2,9 и 133,0±3,0 млн лет, соответственно [20]. Этот возраст совпадает с формированием чароитового месторождения и метасоматического ареола Мурунского массива.

В Центрально-Алданском районе на основании геологических и геохронологических данных К-Аг датирования выделяют четыре этапа магматической деятельности: позднетриасовый-раннеюрский, средне-позднеюрский, позднеюрско-раннемеловой и меловой [3]. Современные прецизионные геохронолигческие данные на данный момент лишь частично подтверждают вышеобозначенные интервалы, однако стоит учитывать, что их объем еще недостаточен.

Становление основной массы сиенитов массива Рябиновый (Центрально-Алданский рудный район) датируется возрастом 144,8±1,5 млн лет (40 Ar/ 38 Ar по полевому шпату, [21]), 143±4 млн лет (Rb-Sr, [22]), 147–132 млн лет (U-Pb по цирконам, [22] внедрение даек лампрофиров происходило 128–125 млн лет (40 Ar/ 39 Ar по флогопиту, [21]) и 127±7 млн лет назад (Rb-Sr, [22]). Основные рудопродуктивные процессы связываются с окончанием становления основной части сиенитов и датируются возрастом 137,2±1,6 млн лет (40 Ar/ 39 Ar по серициту, [21]).

В формировании другого массива Центрального Алдана – Ыллымах, выделяется три этапа: (1) Образование нефелиновых и псевдолейцитовых сиенитов – 140±1,9 млн лет; (2) образование щелочных сиенитов – 130±1,9–131±2,4 млн лет; (3) внедрение щелочных гранитов – 125±1,9 млн лет (Ar/Ar метод, данные авторов).

Кристаллизация щелочного обрамления щелочно-ультраосновного массива Инагли происходила также в несколько этапов: (1) образование клинопироксенитов датируется возрастом 142,4±2 млн лет; (2) образование дифференцированного щелочного кольца массива происходило в интервале 133–128 млн лет: возраст кристаллизации меланократовых сиенитов составляет 133,2±2,2 млн лет, монцонит-порфиров – 130,8±2 млн лет, шонкинитов – 128,4±1,5 млн лет. Возраст образования флогопитовой вкрапленности в дунитах составляет

Рис. 4. Геохронологические рубежи щелочного магматива в Чара-Алданской металогенической зоне (Алдано-Становой щит) с геохронологическими данными (геологическая схема на основе [11], рудные районы нанесены согласно [15], геохронологические данные – согласно [21–28]. Условные обозначения: 1 – фундамент щита; 2 – породы чехла: I – протерозойские песчаники и кембрийские известняки, II – юрские песчаники, III – меловые песчаники; 3 – мезозойские магматические породы; 4 – разломы; 5 – границы рудных районов, связанных с мезозойским щелочным магматизмом: ВТР – Верхнетокинский, ВАР – Верхнеамгинский, ЦАР – Центрально-Алданский, ТР – Тыркандинский, ККР – Кет-Капский

Fig. 4. Geochronological frontiers of alkaline magmatism in Chara-Aldan metalogenic zone (Aldan-Stanovoy shield) with geohronological data (data according to [21–28], geological map according to [11], ore field according to [15]. 1 is the shield base; 2 are the shell breeds: I – Proterozoic sandstones and Cambrian limestones, II – Jurassic sandstones; III – Cretaceous sandstones; 3 – Mesozoic igneous rocks; 4 – fractures; 5 – boundaries of ore fields associated with Mesozoic alkaline magmatism: BTP – Verkhnetokinskiy, BAP – Verkneamginskiy, ILAP – Central Aldan; TP – Tyrkandinskiy; KKP – Ket-Kapskiy

136,5±5,3 млн лет (по флогопиту), а возраст кристаллизации рудных жил (амфибол из полевошпат-хромдиопсид-слюдяной жилы) равен 133,4±1 млн лет [26].

Юго-восточнее от Центрально-Алданского рудного района, приблизительно на 200 км (рис. 4), выделяется Тыркандинский золоторудный район [2]. Возраст щелочных пород Джелтулинского сиенитового массива в Тыркандинском районе по данным Rb-Sr и Ar-Ar датирования попадает в интервал 138-115 млн лет [25, 29], при этом основные щелочные фазы и дайковый комплекс укладываются в достаточно узкий интервал формирования -121-118 млн лет (Ar-Ar метод, [25]). Восточнее Тыркандинского (на 150-200 км) расположен Кет-Капский рудный район (рис. 4). Последние данные U-Pb изотопного датирования по цирконам и титанитам проявлений субщелочного магматизма в ареале Кеткапско-Юнской рудно-магматической провинции показали, что длительность мезозойского магматизма составляет также всего лишь несколько миллионов лет и укладывается в рамки раннемелового этапа – 126–120 млн лет [23].

Таким образом, имеющиеся прецизионные геохронологические данные ограничивают мезозойский магматизм диапазоном 147–115 млн лет. Данные о возрасте магматических пород Западного и Центрального Алдана (Мурунский массив, Верхнеамгинский массив, Рябиновый массив, Ыллымахский массив и массив Инагли) не свидетельствуют о заметном омоложении магматических пород с запада на восток, что, например, характерно для магматиз-

ма Северо-Китайского кратона [30]. Скорее можно говорить о синхронном внедрении пород сходного состава Верхнеамгинского массива и Центрально-Алданских массивов. Магматизм восточных районов Алданского щита демонстрирует тренд на омоложение, по сравнению с Центрально-Алданским районом: Тыркандинский – 121–118 млн лет и Кет-Капский район – 126–120 млн лет. Также, помимо уменьшения временного интервала магматизма до нескольких миллионов лет, можно отметить и сужение диапазона разновидностей по составу щелочных пород. Если в Центрально-Алданском районе масштабно проявлены все три магматические формации (лейцитит-щелочно-сиенитовая, монцонитсиенитовая и среднекислых гранитоидов), то в восточных частях щита представлены формации в основном монцонит-сиенитовая и среднекислых гранитоидов, а состав изверженных пород становится более однородным. Намеченные тенденции на сегодняшний день еще условные и требуют дальнейших петрологических и геохронологических исследований, однако, несомненно, заставляют обратить на себя внимание.

Выводы

По результатам петрографических исследований основные фазы мезозойского щелочного магматизма в пределах Верхнеамгинского массива представлены лейкократовыми сиенитами и дайками мезократовых лампрофиров (минетт). Первые данные ⁴⁰Ar/³⁹Ar датирования показали, что образование Верхнеамгинского массива носило импульсный характер; две стадии кристаллизации основных щелочных фаз массива отвечают следующим возрастным интервалам: (1) 129,1±2,5 млн лет – внедрение сиенитов; (2) 117,7±3,4 млн лет – внедрение даек лампрофиров.

Авторы выражают благодарность главному геологу ГУГГП РС (Я) «Якутскгеология» Е.П. Соколову за предо-

СПИСОК ЛИТЕРАТУРЫ

- Билибин Ю.А. Некоторые интересные черты металлогении Алдана // Избранные труды Ю.А. Билибина. – М.: Изд-во АН СССР, 1959. – Т. II. – С. 344–347.
- Ветлужских В.Г. Золотое оруденение эпохи мезозойской тектономагматической активизации Алдано-Становой провинции: дис. д-ра геол.-минерал. наук. – Якутск, 1990. – 325 с.
- Максимов Е.П. Мезозойские рудоносные магматогенные системы Алдано-Станового щита: автореф. дис. ... д-ра геол.-минерал. наук. – Якутск, 2003. – 44 с.
- Казанский В.И. Уникальный Центрально-Алданский золотоурановый рудный район (Россия) // Геология рудных месторождений. – 2004. – Т. 46. – № 3. – С. 195–211.
- Кочетков А.Я. Мезозойские золотоносные рудно-магматические системы Центрального Алдана // Геология и геофизика. – 2006. – Т. 47. – № 7. – С. 850–864.
- Ярмолюк В.В., Коваленко В.И., Иванов В.Г. Внутриплитная позднемезозойско-кайнозойская вулканическая провинция Центрально-Восточной Азии – проекция горячего поля мантии // Геотектоника. – 1995. – № 5. – С. 41–67.
- Ярмолюк В.В., Коваленко В.И., Кузьмин М.И. Северо-Азиатский суперплюм в фанерозое: магматизм и глубинная геодинамика // Геотектоника. – 2000. – № 5. – С. 3–29.
- Khomich V.G., Boriskina N.G., Santosh M. A geodynamic perspective of worldclass gold deposits in East Asia // Gondwana Research. - 2014. - V. 26. - P. 816-833.
- Khomich V.G., Boriskina N.G., Santosh M. Geodynamics of late Mesozoic PGE, Au, and Umineralization in the Aldan shield, North Asian Craton // Ore Geology Reviews. – 2015. – V. 68. – P. 30–42.
- Superplumes: Beyond Plate Tectonics / D.A. Yuen, S. Maruyama, Sh-i. Karato, B.F. Windley. – Berlin: Springer, 2007. – Part V. – 566 p.
- Дзевановский Ю.К., Ворона И.Д., Лагздина Г.Ю. Геологическая карта южной части Якутской АССР. – Л.: Ленинградская картфабрика ВАГТ, 1972. – 280 с.
- Дворник Г.П. Серицит-микроклиновые метасоматиты и золотое оруденение Рябиновского рудного поля (Алданский щит) // Литосфера. – 2009. – № 2. – С. 56–66.
- Соколов Е.П. Рудное золото Верхнеамгинского золотоносного района // Геология и минеральные ресурсы Северо-Востока Азии: материалы Всероссийской научно-практической конференции. Якутск, 31 марта-2 апреля 2015. – Якутск: ИД СВФУ, 2015. – С. 458–462.
- 14. Анисимова Г.С., Зайцев А.И., Соколов Е.П. Rb-Sr систематика пород Верхнеамгинской площади (Ю. Якутия) // Геология и минеральные ресурсы Северо-Востока Азии: материалы Всероссийской научно-практической конференциию. – Якутск, 6–8 апреля 2016. – Якутск: ИД СВФУ, 2016. – С. 19–23.
- Парфенов Л.М., Кузьмин М.И. Тектоника, геодинамика и металлогения Республики Саха (Якутия). М.: МАИК «Наука/Интерпериодика», 2001. 571 с.
- Baksi A.K., Archibald D.A., Farrar E. Intercalibration of ⁴⁰Ar/³⁹Ar dating standards // Chem. Geol. – № 129. – P. 307–324.
- Травин А.В. Термохронология субдукционно-коллизионных, коллизионных событий Центральной Азии: автореф. дис. ... д-ра геол.-минерал. наук. – Новосибирск, 2016. – 38 с.
- Steiger R.H., Jager E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology // Earth Planet. Sci. Letters. 1977. № 36. P. 359-361.

ставленный каменный материал для исследований. Работа выполнена в рамках государственного задания по проектам № 0330-2016-0013, 0330-2016-0002. Геохронологические исследования выполнены за счет гранта РФФИ № 18-45-140002. Геологические исследования поддержаны исследовательскими проектами института алмаза и благородных металлов СО РАН № 0381-2019-0001 и 0381-2019-0003.

- Whitney D., Evans B. Abbreviations for names of rock-forming minerals // American Mineralogist. – 2010. – V. 95. – P. 185–187.
- Age and origin of charoitite, Malyy Murun massif, Siberia, Russia / Y. Wang, H. He, A.V. Ivanov, R. Zhu, C. Lo // International Geology Review. - 2014. - V. 56. - P. 1007-1019.
- Geochronology of magmatic processes and ore-formation in the Central Aldan gold-ore region / A.S. Borisenko, I.N. Gas'kov, E.G. Dashkevich, A.M. Okrugin, A.V. Ponomarchuk, A.V. Travin / Intern. Symp. Large Igneous Provinces of Asia. – Irkutsk, Russia, 2011. – P. 38–39.
- 22. Петрография, геохимия и изотопное датирование (U-Pb и Rb-Sr) щелочных магматических пород Рябинового массива (Южная Якутия) / В.В. Шатов, А.В. Молчанов, Н.В. Шатова, С.А. Сергеев, В.Н. Белова, А.В. Терехов, А.В. Радьков, О.Л. Соловьев // Региональная геология и металлогения. – 2012. – № 51. – С. 62–78.
- Geohronological limits of subalkaline magmatism in Ket-Kap-Yuna igneous province, Aldan shield / V.F. Polin, A.I. Khanchuk, S.Y. Budnitskii, A.N. Solyanik, A.S. Shishov, V.V. Mitsuk, V.A. Glebovitskii, N.G. Rizvanova // Doklady earth sciences. – 2012. – V. 422. – № 1. – P. 17–23.
- Petrology and age ultramafic (lamproitic) rocks Yakokut complex, Aldan Eastern Siberia determinations of the from the Eastern Siberia determinations of the from the Shield, Eastern Siberia / U. Mues-Schmacher, J. Keller, V. Kononova, P. Suddaby // Mineralogical Magazine. - 1995. - V. 59. - P. 409-428.
- 25. Геохронология и рудоносность Джелтулинского щелочного массива (Алданский щит, Южная Якутия) / И.Р. Прокопьев, А.А. Кравченко, А.И. Иванов, А.С. Борисенко, А.В. Пономарчук, А.И. Зайцев, Е.А. Кардаш, А.А. Рожков // Тихоокеанская геология. – 2018. – Т. 37. – № 1. – С. 38–51.
- 26. ⁴⁰Аг/³⁹Аг геохронология щелочных пород массива Инагли (Алданский щит, Южная Якутия) / А.В. Пономарчук, И.Р. Прокопьев, Т.В. Светлицкая, А.Г. Дорошкевич // Геология и геофизика. – 2019. – Т. 60. – № 1. – С.41–54.
- Геохронология щелочных магматических пород и метасоматитов Рябинового массива (Южная Якутия) на основе изотопногеохемического (U-Pb, REE) исследования цирокона / Н.В. Шатова, С.Г. Скублов, А.Е. Мельник, В.В. Шатов, А.В. Молчанов, А.В. Терехов, С.А. Сергеев // Региональная геология и металлогения. – 2017. – № 69. – С. 33–48.
- Пономарчук А.В., Прокопьев И.Р., Борисенко А.С. Аг/Аг и U-Pb геохронология массива Инагли // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту): Материалы научного совещания. – Иркутск, 2016. – Вып. 14. – С. 228–229.
- 29. Кравченко А.А., Иванов А.И., Прокопьев И.Р. Особенности состава и возраст формирования мезозойских интрузий Тыркандинского рудного района Алдано-Станового щита // Отечественная геология. – 2014. – № 5. – С. 43–52.
- 30. Мезозойский гранитоидный магматизм и металлогения области сочленения Центрально-Азиатского и Тихоокеанского поясов / Н.П. Романовский, Ю.Ф. Малышев, М.В. Горшко, В.Г. Гурович, М.И. Копылов // Тихоокеанская геология. – 2009. – Т. 28. – № 4. – С. 35–54.

Поступила 21.05.2018 г.

Информация об авторах

Пономарчук А.В., аспирант, младший научный сотрудник лаборатории изотопно-аналитической геохимии Института геологии и минералогии им. В.С. Соболева СО РАН.

Прокопьев И.Р., кандидат геолого-минералогических наук, доцент кафедры геологии рудных месторождений Геолого-геофизического факультета Новосибирского государственного университета; научный сотрудник Лаборатории щелочного магматизма и оруденения Института геологии и минералогии им. В.С. Соболева СО РАН.

Дорошкевич А.Г., доктор геолого-минералогических наук, ведущий научный сотрудник, заведующая Лабораторией щелочного магматизма и оруденения Института Геологии и Минералогии им. В.С. Соболева СО РАН.

Егитова И.В., магистрант Геолого-геофизического факультета Новосибирского Государственного университета; инженер-исследователь лаборатории рудоносности щелочного магматизма Института геологии и минералогии им. В.С. Соболева СО РАН.

Кравченко А.А., кандидат геолого-минералогических наук, старший научный сотрудник, доцент кафедры региональной геологии и геоинформатики Северо-восточного федерального университета им. М.К. Аммосова; исполняющий обязанности заведующего лабораторией металлогении Института геологии алмаза и благородных металлов СО РАН.

Иванов А.И., кандидат геолого-минералогических наук, научный сотрудник, лаборатории геодинамики и региональной геологии Института геологии алмаза и благородных металлов СО РАН.

UDC 550.93:552.3

⁴⁰Ar/³⁹Ar AGE OF ALKALINE ROCKS OF VERKHNEAMGINSKIY MASSIF (ALDAN SHIELD, SOUTH YAKUTIA)

Anton V. Ponomarchuk¹,

antponomar@gmail.com

Ilya R. Prokopyev^{2,1}, prokop@igm.nsc.ru

Anna G. Doroshkevich¹,

anna-dor@yandex.ru

Irina V. Egitova^{2,1},

egitiv@mail.ru

Alexander A. Kravchenko^{3,4},

freshrock@yandex.ru

Alexey I. Ivanov⁴,

Leps 2002@mail.ru

¹ V.S. Sobolev Institute of Geology and Mineralogy SB RAS, 3, Koptyug street, Novosibirsk, 630090, Russia.

- ² Novosibirsk State University,
 2, Pyrogov street, Novosibirsk, 630090, Russia.
- ³ North-Eastern Federal University of M.K. Ammosov, 58, Belinsky street, Yakutsk, 677000, Russia.
- ⁴ Geology Institute of the SB RAS,
 39, Lenin avenue, Yakutsk, 677098, Russia.

The relevance of the research is caused by the need to expand mineral resources base, including gold-bearing ores. Large alkaline provinces, like Aldan-Stanovoy shield, are of interest because gold-bearing ores usually related to alkaline rock. They may form large and even giant deposits. Verkhneamginskiy massif is located in Verkhneamginskiy ore field in Aldan-Stanovoy shield. Verkhneamginskiy ore field is the part of large Charo-Aldan metallogenic zone, its length is more than 700 km from west to east. A characteristic feature of the Verkhneamginskiy ore region is its association with the Amginsky submeridional structural zone of the tectonic melange separating the Central Aldan compound terrain in the East from the West Aldan and Tynda composite terrains in the West and South, respectively. **The main aim** of the research is to detect the main rock types of Verkhneamginskiy massif, to study the features of structure and composition and to identify the age of massif crystallization as well as to compare the results with the available geochronological data on Mesozoic magmatism of the Aldan shield.

Methods: petrographic study and ⁴⁰Ar/³⁹Ar dating by the step heating method by phlogopite monofractions.

Results. The main phases of Mesozoic alkaline magmatism are leucocratic syenites and mesocratic lamprophyres. Using the 4° Ar/ 4° Ar dating of phlogopite monofraction the authors have determined two discrete impulses: (1) 129,1.5±2,5 Ma emplacement of syenites; (2) 117,7±3,4 Ma emplacement of lamprophyre dikes. Mesozoic magmatism, manifested in Verkhneamginskiy area, demonstrates similar age boundaries with magmatic processes shown in the Aldan shield in the Mesozoic era.

Key words:

Aldan-Stanovoy shield, Aldan shield, Verhneamginskiy massif, Verhneamginskiy ore field, petrography, Mesozoic, alkaline rock, ⁴⁰Ar/³⁹Ar dating.

The authors appreciate the rock material provided for the research by E.P. Sokolova, the chief geologist of «Yakutskgeologiya». The research was carried out within the State Task on the projects no. 0330-2016-0013, 0330-2016-0002. Geochronological study was carried out due to the RFBR grant no. 18-45-140002. The lithosphere evolution investigations were supported by the research projects of the Russian Institute of Diamond and Precious Metal Geology, SB RAS N^0 0381-2019-0001 and 0381-2019-0003.

REFERENCES

- Bilibin Y.O. Nekotorye interesnye cherty metalogenii Aldana [Some interesting features of metallogeny of the Aldan]. *Izbrannye trudy Yu.A. Bilibina* [Scientific paper of Yu.A. Bilibin]. Moscow, AN SSSR publ., 1959. Vol. 2, pp. 344–347.
- Vetluzhskikh V.G. Zolotoe orudinenie epokhi tektono-magmaticheskoy aktivisatsii Aldano-Stanovogo shchita. Dis. Dokt. nauk [Gold ore mineralization of the Mesozoic tectono-magmatic activation of the Aldano-Stanovoy province. Dr. Diss.]. Yakutsk, 1990. 325 p.

- Maksimov E.P. Mezozoiskie rudonosnye magmatogennye sistemy. Avtoreferat Dis. Dokt. nauk [Mesozoic ore-magmatic system of the Aldano-Stanovoy shield. Dr. Diss. Abstract]. Yakutsk, 2003. 44 p.
- Kazanskiy V.I. Unikalniy Tsentralno-Aldanskiy zoloto-uranovy rudny rayon (Rossiya) [Unique Central Aldan gold-uranium ore region (Russia)]. *Geologiya rudnykh mestorozhdeniy*, 2004, vol. 46, no. 3, pp. 195–211.
- Kochetkov A.Ya. Mezozoiskie zolotonosnye rudno-magmaticheskie sistemy Tsentralnogo Aldana [Mesozoic gold-bearing oremagmatic systems of Central Aldan]. *Geologiya i geofizika*, 2006, vol. 47, no. 7, pp. 850–867.
- Yarmoluk V.V., Kovalenko V.I., Ivanov V.G. Vnutriplitnaya pozdnemezozoyskaya-kainozoyskaya vulkanicheshaya provintsiya Tsentralno-Vostochnoy Asii – proektsiya goryachego polya mantii [Interplate pastmesozoic-cenozoic volcanic province of Central-East Asia – projection of hot mantle field]. *Geotektonica*, 1995, no. 5, pp. 41–67.
- Yarmoluk V.V., Kovalenko V.I., Kuzmin M.I. Severo-Aziatskiy superplum v fanerozoe: magmatizm i glubinnaya geodinamika [Nord-Asian Superplume in phanerozoic time: magmatism and deep geodynamics]. *Geotektonika*, 2000, no. 5, pp. 3–29.
- Khomich V.G., Boriskina N.G., Santosh M. A geodynamic perspective of worldclass gold deposits in East Asia. *Gondwana Res*earch, 2014, vol. 26, pp. 816–833.
- Khomich V.G., Boriskina N.G., Santosh M. Geodynamics of late Mesozoic PGE, Au, and U mineralization in the Aldan shield, North Asian Craton. Ore Geology Reviews, 2015, vol. 68, pp. 30-42.
- Yuen D.A., Maruyama S., Karato Sh-i., Windley B.F. Superplumes: Beyond Plate Tectonics. Berlin, Springer, 2007. P. V, 566 p.
- Dzevanovskiy Yu.K., Vorona I.D., Lagzdina G.Yu. Geologicheskaya karta yuzhnoy chasti Yakutsroy ASSR [Geological map of South part of Yakutskaya ASSR]. Leningrad, Liningradskaya kartfabrica Publ., 1972. 280 p.
- Dvornik G.P. Sericite-microcline metasomatites and gold ores of Ryabinovoe ore field. *Lithosphere*, 2009, no. 2, pp. 56–66. In Rus.
- Sokolov E.P., Rudnoe zoloto Verkhneamginskogo zolotonosnogo rayona [Gold ores of Verkhneamginskiy ore district]. *Geologicheskie i mineralogicheskie resursy Severo-Vostoka Asii: Materialy konferenzii* [Geological and mineralogical resources of North-East of Asia. Proc. of the conference]. Yakutsk, 31 March-2 April 2015. Yakutsk, SVFU Publ., 2015. pp. 458-462.
- Anisimova G.S., Zaytsev A.I., Sokolov E.P. Rb-Sr sistematika porod Verkhneamginskoy ploshchadi [Rb-Sr systematics of rocks of Verkhneamginskaya area (South Yakutia)] *Geologicheskie i mineralogicheskie resursy Severo-Vostoka Asii: Materialy konferenzii* [English]. Yakutsk, 6-8 April 2016. Yakutsk, SVFU Publ., 2016. pp. 19-23.
- Parfenov L.M., Kuzmin M. I. *Tektonika, geodinamika i metallogeniya respubliki Sakha (Yakutia)* [Tectonics, geodynamics and metallogeny of Sakha (Yakutia)]. Moscow, MAIK Nauka/Interperiodika Publ., 2001. 571 p.
- Baksi A.K., Archibald D.A., Farrar E. Intercalibration of ⁴⁰Ar/³⁹Ar dating standards. *Chem. Geol.*, 1996, vol. 129, pp. 307-324.
- Travin A.V. Termokhronologiya subdutstsionno-kollizionnykh, kollizionnykh sobytiy Tsentralnoy Azii. Avtoreferat Dis. Dokt. nauk [Thermochronology of subduction-collision, collision events in Central Asia. Dr. Diss. Abstract]. Novosibirsk, 2016. 38 p.
- Steiger R.H., Jager E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. *Earth Planet. Sci. Letters*, 1977, no. 36, pp. 359–361.

- Whitney D., Evans B. Abbreviations for names of rock-forming minerals. American Mineralogist, 2010, vol. 95, pp. 185–187.
- Wang Y., He H., Ivanov A.V., Zhu R., Lo C. Age and origin of charoitite, Malyy Murun massif, Siberia, Russia. *International Geology Review*, 2014, vol. 56, pp. 1007–1019.
- Borisenko A.S., Gas'kov I.N., Dashkevich E.G., Okrugin A.M., Ponomarchuk A.V., Travin A.V. Geochronology of magmatic processes and ore-formation in the Central Aldan gold-ore region. *Intern. Symp. Large Igneous Provinces of Asia*. Irkutsk, 2011. pp. 38–39.
- 22. Shatov V.V., Molchanov A.V., Shatova N.V., Sergeev S.A., Belova V.N., Terehov A.V., Radkov A.V. Petrography, geochemistry and isotopic dating of alkaline magmatic rocks (U-Pb and Rb-Sr) of Ryabinoviy massif (South Yakutia). *Regional geology and metallogeny*, 2012, no. 51, pp. 62–78. In Rus.
- 23. Polin V.F., Khanchuk A.I., Budnitskii S.Y., Solyanik A.N., Shishov A.S., Mitsuk V.V., Glebovitskii V.A., Rizvanova N.G. Geohronological limits of subalkaline magmatism in Ket-Kap-Yuna igneous province, Aldan shield. *Doklady earth sciences*, 2012, vol. 422, no. 1, pp. 17–23.
- Mues-Schmacher U., Keller J., Kononova V., Suddaby P. Petrology and age ultramafic (lamproitic) rocks Yakokut complex, Aldan Eastern Siberia determinations of the from the Eastern Siberia determinations of the from the Shield, Eastern Siberia. *Mineralogical Magazine*, 1995, vol. 59, pp. 409–428.
- 25. Prokopyev I.R., Kravchenko A.A., Ivanov A.I., Borisenko A.S., Ponomarchuk A.V., Zaytsev A.I., Kardash E.A., Rozshkov A.A. Geokhronologya i orudenenie Dzheltulinskogo shchelochnogo massiva (Aldanskii shit, Yuzhnaya Yakutia) [Geohronology and ores of Dzheltula alkaline massif (Aldan shield, South Yakutia)]. *Tihookeanskaya geologiya*, 2018, vol. 37, no. 1, pp. 38-51.
- 26. Ponomarchuk A.V., Prokopyev I.R., Svetlitskaya T.V., Doroshkevich A.G. ⁴⁰Ar/³⁹Ar geohronologya shchelochnykh porod massiva Inagli (Aldanskii shit, Yuzhnaya Yakutia) [⁴⁰Ar/³⁹Ar geohronology of alkaline rock of Inagli massif (Aldan shield, South Yakutia)]. *Geologiya i gepfizika*, 2019, vol. 60, no. 1, pp. 41–60.
- 27. Shatova N.V., Skublov S.G., Melnik A.E., Shatov V.V., Molchanov A.V., Terekhov A.V., Sergeev S.A. Geochronology of alkaline magmatic rocks and metosomatites of Ryabinovy stock (South Yakutia) based on zircon isotopic and geochemical (U-Pb, REE) investigations. *Regional geology and metallogeny*, 2017, no. 69, pp. 33-48. In Rus.
- Ponomarchuk A.V., Prokopyev I.R., Borisenko A.S. Ar/Ar i U-Pb geokhronologiya massiva Inagli [Ar/Ar and U-Pb geochronology of Inagly massif]. Geodinamicheskaya evolyutsiya litosfery Tsentralno-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu). Materialy nauchnogo soveshchaniya [Geodynamic Evolution of the Lithosphere in the Central Asian Mobile Belt: from Ocean to Continent. Scientific meeting Proc.]. Irkutsk, 2016. Iss. 14, pp. 228–229.
- Kravchenko A.A., Ivanov A.I., Prokopyev I.R. Features of composition and age of formation of Mesozoic intrusions of Tyrkandinckiy ore field in Aldano-Stanovoy region. *Domestic geology*, 2014, no. 5, pp. 43-52. In Rus.
- 30. Romanovskiy N.P., Malyshev Yu.F., Gorshko M.V. Gurovich V.G., Kopylov M.I. Mezozoisky granitny magmatizm i metallogeniya oblasti sochleneniya Tsentralno-Aziatskogo i Tikhookeanskogo poyasov [Mesozoic granitic magmatism and metallogeny of Central Asia and Pacific orogenic belts joint area]. *Tikhookeanskaya geologiya*, 2009, vol. 28, no. 4, pp. 35–54.

Received: 21 May 2018.

Information about the authors

Anton V. Ponomarchuk, graduate student, junior researcher, V.S. Sobolev Institute of Geology and Mineralogy SB RAS.

Ilya R. Prokopyev, Cand. Sc., associate professor, Novosibirsk State University; researcher, V.S. Sobolev Institute of Geology and Mineralogy SB RAS.

Anna G. Doroshkevich, Dr. Sc., leading researcher, head of the laboratory of alkaline magmatism and ore-forming processes, V.S. Sobolev Institute of Geology and Mineralogy SB RAS.

Irina V. Egitova, graduate student, Novosibirsk State University; engineer-researcher, V.S. Sobolev Institute of Geology and Mineralogy SB RAS.

Alexander A. Kravchenko, Cand. Sc., associate professor, North-Eastern Federal University of M.K. Ammosov; senior researcher, acting head of the Metallogeny Laboratory of the Diamond and Precious Metal, Geology Institute of the SB RAS.

Alexey I. Ivanov, Cand. Sc., researcher, Geology Institute of the SB RAS.