Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки 09.06.01 Информатика и вычислительная техника Инженерная школа неразрушающего контроля и безопасности Отделение контроля и диагностики

Научный доклад об основных результатах подготовленной научно-квалификационной работы

Тема научного доклада

Математическое моделирование возникновения и развития лесных пожаров под действием светового излучения при авариях на газопроводах

УДК <u>519.876:630:614.841:536.3:622.691.4.004.6</u>

Аспирант

114111144111				
	Группа	ФИО	Подпись	Дата
	A5-40	Алтамирова Элина		

Руководителя профиля подготовки

J				
Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Доцент	Гергет Ольга Михайловна	д.т.н., доцент		

Руководитель отделения

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Гл. науч. сотрудник ОКД,	Суржиков Анатолий	д. фм. н.,		
рук. отделения	Петрович	профессор		

Научный руководитель

THE THEM PINCEOMITTEE				
Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Профессор	Перминов Валерий	д. фм. н.,		
	Афанасьевич	доцент		

АННОТАЦИЯ К НАУЧНО-КВАЛИФИКАЦИОННОЙ РАБОТЕ

«Математическое моделирование возникновения и развития лесных пожаров под действием светового излучения при авариях на газопроводах»

Автор: Алтамирова Элина, аспирант гр. А5-40 ОКД ТПУ Научный рук-ль: Перминов Валерий Афанасьевич, профессор ОИТ ТПУ

Настоящая научно-квалификационная работа посвящена разработке математических моделей возникновения лесных пожаров под действием источника теплового излучения в результате аварий на газопроводах с образованием «огненного шара».

Теоретическая значимость работы определяется разработкой новых математических моделей возникновения лесных пожаров в результате воздействия на лесной массив интенсивного источника теплового излучения при взрыве газопровода с образованием «огненного шара», с учетом турбулентности, двутемпературности и неоднородности среды.

Практически значимыми результатами работы являются: результаты численных расчетов, позволяющие определить время и радиус зажигания лесных горючих материалов (далее - ЛГМ) при воздействии на него источника теплового излучения; данные о протекании термических и физико-химических процессах по высоте полога леса в момент зажигания ЛГМ, которые дают обширный информационный материал для оценки последствий о дальнейшем развитии процессов горения в пологе леса, что делает возможным осуществление прогноза зажигания ЛГМ и характера возможного лесного пожара при возникновении протекания найденные временные интервалы развития отдельных стадий низового пожара на начальном этапе его возникновения и развития в зависимости от разработанная структурно-методологическая внешних условий: анализа зажигания ЛГМ в результате взрыва газопровода с образованием «огненного шара», на основе которой рассчитана база данных радиусов зажигания ЛГМ для типовых сценариев аварий.

Основные результаты работы докладывались и обсуждались на десяти Всероссийских и международных научно-практических конференциях: ХХІ Всероссийская научно-техническая конференция «Энергетика: эффективность, надежность, безопасность», г. Томск, 2016 г; XIII Международная конференция «Перспективы студентов, аспирантов И молодых ученых развития г; ХХ Всероссийская фундаментальных наук», Томск, 2016 научная конференция с международным участием "Сопряженные задачи механики реагирующих сред, информатики и экологии", Томск, 2016 г; V Международная школьников, студентов, аспирантов, молодых «Ресурсоэффективные системы в управлении и контроле: взгляд в будущее», Томск, 2016 г; XIV Международная научно-практическая конференция студентов, аспирантов и молодых ученых, Томск, 2016 г; XIV Международная конференция студентов, аспирантов и молодых ученых «Перспективы развития фундаментальных наук», Томск, 2017 г; Двадцать четвертой Всероссийской

научной конференции студентов-физиков и молодых ученых (ВНКСФ-24, Томск), Томск, 2018 г; 13th International Forum on Strategic Technology (IFOST 2018): May 30-June 1 2018, Harbin, China; XIII Международная молодых ученых "Физика окружающей среды" им. А.Г. Колесника, Томск, 2018 г; XXI Всероссийская научная конференция с международным участием "Сопряженные задачи механики реагирующих сред, информатики и экологии", Томск, 2018 г. По теме диссертации опубликовано 8 статей, материалы 5 докладов, тезисы 3 докладов. В том числе 5 публикаций индексируются в Международных базах данных SCOPUS в статусе Conference paper, 1 статья в рецензируемых изданиях, рекомендованных ВАК РΦ. Научноквалификационная работа состоит из 5 глав, выводов и списка литературы из 181 источника, и представлена на 145 страницах, которые содержат 41 рисунок и 28 таблиц.

Во «Введении» обоснована актуальность данной исследовательской работы, прописаны ее цель и перечень задач, наряду с этим приведены основные положения, выносимые на защиту и практическая значимость полученных результатов.

В первой главе проведен ретроспективный анализ проблемы лесных пожаров, как отечественными, так и зарубежными исследователями, рассмотрена одна из основных проблем в области промышленной безопасности — осуществление достоверного прогноза радиусов зажигания ЛГМ при взрыве углеводородов с образованием «огненного шара» на различных этапах технологических процессов.

Во второй главе представлены физико-математические постановки задач о возникновении пожара под действием источника теплового излучения в квазиодномерном и осесимметричных приближениях и результаты их численного решения.

В третьей главе рассмотрены особенности возникновения и распространения низовых лесных пожаров (далее — НЛП), представлена физико-математическая постановка задачи возникновения и распространения НЛП, также приведены результаты численного решения задач возникновения НЛП под действием источника теплового излучения.

В четвертой главе осуществлен анализ и оценка параметров «огненного шара» по существующим моделям, а также проведен анализ самих методик расчета основных параметров «огненного шара» с целью применения их для определения радиуса зажигания ЛГМ, представлены данные численного решения задач.

В пятой главе по результатам проделанной работы, на основе полученной математической модели были осуществлены численные расчеты с учетом анализа полученных данных в предыдущей главе и представлено описание основных типовых сценариев аварий на газопроводах с зажиганием ЛГМ.

В заключении приведены основные выводы и результаты исследовательской работы.