Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки/профиль12.06.01 Фотоника, приборостроение, оптические и биотехнические системы и технологии/ 05.11.13 - Приборы и методы контроля природной среды, веществ, материалов и изделий

Школа Исследовательская школа физики высокоэнергетических процессов Отделение

Научный доклад об основных результатах подготовленной научно-квалификационной работы

Тема научного доклада			
Контроль потерь в оптических кабелях связи при механических воздействиях			
VIIIC (21 201 2/0 721 2			

УДК 621.391.3/.8:531.3

Аспирант

Группа	ФИО	Подпись	Дата
A5-33	Алькина Алия Даулетхановна		15.05.2019

Руководитель профиля подготовки

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Профессор	Юрченко Алексей	д.т.н.,		16.05.2019
исследовательской	Васильевич	профессор		
школы физики				
высокоэнергетических				
процессов				

Руководитель отделения

Должность	ФИО	Ученая степень, звание	Подпись	Дата

Научный руководитель

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Профессор	Юрченко Алексей	д.т.н.,		16.05.2019
исследовательской	Васильевич	профессор		
школы физики				
высокоэнергетических				
процессов				

Основной задачей оптического кабеля является передача оптического сигнала. За осуществление данной функции в ОК отвечает оптическое волокно. Все остальные элементы ОК лишь помогают ее выполнять, защищая ОВ от различных воздействий. Перечень внешних воздействующих факторов, которым подвергаются ОК в течение эксплуатации, очень обширен.

В качестве одномодового волокна использовался отрезок соединительного кабеля типа: 9/125 CorningOpticalFiber SMF – 281170 E 20709<UL/CUL> OFNR Risercable053794FT, NorthernLiahtecable; JNC. E 120857 (UL) OFNR, Risercable 50/125 002075 FT

В ходе первого эксперимента оптоволоконный кабель был закреплен на стенде под углом в 45 градусов в количестве от одного до семи. В ходе следующих экспериментов, проведенных аналогичным образом, были выявлены аналогичные зависимости для всех остальных случаев. Графики сравнены и выявлены главные закономерности, такие как нелинейность роста потерь и мультипликативность потерь за каждый угол. Изгиб волокна приводит к нарушению закона полного внутреннего отражения, что в свою очередь ведет к высвечиванию оптического потока за переделы ОВ.

Разработанный мною алгоритм автоматизированного многовариантного расчета позволяет установить параметры дополнительных потерь, возникающие в ОВ типа G-652 находящегося в защитой оболочке

Диссертация состоит из введения, четырех глав и заключения, списка использованной литературы из 73 наименований. Она изложена на 97 страницах машинописного текста, содержит 22 рисунка, 15 таблиц, 1 приложение изложено на 6 страницах и включает 6 рисунков

По теме диссертации опубликованы 15 работ, статей в научных журналах - 7, докладов на конференциях - 8. Также опубликовано 7 статей в изданиях, рекомендованных ВАК. Имеется 3 патента на полезную модель Республики Казахстан и 6 свидетельств о государственной регистрации прав

на объект авторского права Республики Казахстан, где изложены основные положения моей диссертационной работы.