Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» (ТПУ)

Инженерная школа природных ресурсов

Направление подготовки: 18.03.01 Химическая технология

Отделение химической инженерии

Должность

БАКАЛАВРСКАЯ РАБОТА

Тема работы				
Определение ряда водорастворимых витаминов группы В в составе детских БАД				
	УДК 577.164-047	7.44:664.022.3		<u>,</u>
	Студе	ент		
Группа	ФИО		Подпись	Дата
2Д5Б	Лоскутова Лилия Ни	колаевна		
				•
	Руководите	ель ВКР		
Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент ОХИ	Дорожко Е.В.	к.х.н.		
Консультант				
Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ассистент ОХИ	Вишенкова Д.А.	к.х.н.		

КОНСУЛЬТАНТЫ ПО РАЗДЕЛАМ:

По разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»

Ученая степень,

Подпись

ФИО

		звание		
Доцент ОСГН	Рыжакина Т.Г.	к.э.н.		
Ι	То разделу «Социальна:	я ответственност	Ь»	
Должность	ФИО	Ученая степень,	Подпись	Дата
Должность	ФИО	Ученая степень, звание	Подпись	Дата

допустить к защите:

		•		
Руководитель ООП	ФИО	Ученая степень,	Подпись	Дата
		звание		
Доцент ОХИ	Михеева Е.В.	к.х.н.		

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ООП

Код	Результат обучения		
результата			
	Профессиональные компетенции		
P1	Применять базовые и специальные, математические, естественнонаучные,		
	социально-экономические и профессиональные знания в		
	профессиональной деятельности		
P2	Применять знания в области современных химических технологий для		
	решения производственных задач		
Р3	Ставить и решать задачи производственного анализа, связанные с		
	созданием и переработкой материалов с использованием моделирования		
	объектов и процессов химической технологии		
P4	Разрабатывать новые технологические процессы, проектировать и		
	использовать новое оборудование химической технологии, проектировать		
	объекты химической технологии в контексте предприятия, общества и		
	окружающей среды		
P5	Проводить теоретические и экспериментальные исследования в области		
	современных химических технологий		
P6	Внедрять, эксплуатировать и обслуживать современное		
	высокотехнологичное оборудование, обеспечивать его высокую		
	эффективность, выводить на рынок новые материалы, соблюдать правила		
	охраны здоровья и безопасности труда на химико-технологическом		
	производстве, выполнять требования по защите окружающей среды		
	Универсальные компетенции		
P7	Демонстрировать знания социальных, этических и культурных аспектов		
	профессиональной деятельности		
P8	Самостоятельно учиться и непрерывно повышать квалификацию в		
	течение всего периода профессиональной деятельности		
P9	Активно владеть иностранным языком на уровне, позволяющем		
	разрабатывать документацию, презентовать результаты		
	профессиональной деятельности		
P10	Эффективно работать индивидуально и в коллективе, демонстрировать		
	лидерство в инженерной деятельности и инженерном		
	предпринимательстве, ответственность за результаты работы и готовность		
	следовать корпоративной культуре организации		

Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» (ТПУ)

Инженерная школа природных ресурсов Направление подготовки (специальность): 18.03.01 Химическая технология Отделение химической инженерии

УТВЕРЖ,	ДАЮ:	
Руководит	гель ООП	[
	Мих	кеева Е.В.
(Подпись)	(Дата)	(Ф.И.О.)

ЗАДАНИЕ на выполнение выпускной квалификационной работы

В форме:				
бакалаврской работы				
(бакалаврской работы, дипломного проекта/работы, магистерской диссертации) Студенту:				
Группа		ФИО		
2Д5Б	Лоскутовой Лилии Николаевне			
Тема работы:	Тема работы:			
Определение ряда водорастворимых витаминов группы В в составе детских БАД				
Утверждена приказо	м директора (дата, номер)	3624/с от 08.05.2019		
Срок сдачи студент	ом выполненной работы:			

ТЕХНИЧЕСКОЕ ЗАДАНИЕ:

Исходные данные к работе	В качестве объектов исследования взять детские БАД; разработать методику пробоподготовки коммерческих БАД для определения качественного и количественного составов детских БАД методом флуориметрии
Перечень подлежащих исследованию, проектированию и разработке вопросов	Провести литературный обзор по тематике научно- исследовательской работы; описать используемое оборудование в аналитической части; представить методики проведения экспериментов;

	проанализировать полученные результаты; сделать выводы по работе.	
Перечень графического матері	иала Графический материал полученных результатов	
Консультанты по разделам вы (с указанием разделов)	пускной квалификационной работы	
Раздел	Консультант	
Финансовый менеджмент, ресурсоэффективность и ресурсосбережение	Рыжакина Татьяна Гавриловна	
	Винокурова Галина Федоровна	

Дата выдачи задания на выполнение выпускной	
квалификационной работы по линейному графику	

Задание выдал руководитель / консультант (при наличии):

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Доцент ОХИ	Дорожко Е.В.	к.х.н.		
Ассистент ОХИ	Вишенкова Д.А.	к.х.н.		

Задание принял к исполнению студент:

• •• • • • • • • • • • • • • • • • • •			
Группа	ФИО	Подпись	Дата
2Д5Б	Лоскутова Лилия Николаевна		

Реферат

Выпускная квалификационная работа содержит: 95 страниц, 30 рисунков, 40 таблиц, 69 источников.

Ключевые слова: водорастворимые витамины группы В, тиамин, рибофлавин, никотиновая кислота, пиридоксин, фолиевая кислота, биологически-активные добавки, оптические методы анализа, спектрофотометрия, флуориметрия.

Объектом исследования являются коммерческие детские БАД.

Цель работы: определение содержания ряда водорастворимых витаминов группы В в составе детских БАД методом флуориметрии.

В научно – исследовательской работе был определен качественный и количественный составы детских БАД с использованием оптических методов анализа.

В результате исследования были изучены оптические свойства некоторых водорастворимых витаминов группы В методами спектрофотометрии и флуориметрии; предложена флуориметрическая методика совместного количественного определения данных витаминов; разработана методика пробоподготовки анализа реальных образцов.

В будущем планируется разработать рекомендации для использования полученных результатов НИР в фармацевтической отрасли, медицинских учреждениях и лабораториях, занимающиеся разработкой БАД.

Предложенный метод флуориметрического определения некоторых водорастворимых витаминов группы В по сравнению со спектрофотометрическим более чувствителен и позволяет добиваться более низких пределов обнаружения. Кроме того, флуориметрия характеризуется большей селективностью, т.к. люминесценцией обладает меньший круг соединений, в то же время избирательность можно повысить подбором длин возбуждения и регистрации сигнала, изменением рН раствора.

Обозначения и сокращения

НИР – научно исследовательская работа

БАД – биологически-активные добавки

 B_1 – витамин тиамина гидрохлорид

В₂ – витамин рибофлавин

 B_3 – витамин никотиновая кислота

В₆ – витамин пиридоксин

В₉ – витамин фолиевая кислота

ВЭЖХ – высоко-эффективная жидкостная хроматография

УФ – ультрафиолетовая

МС – масс-спектрометрия

ЖХ-ДМД – жидкостная хроматография с диодно-матричным детектированием

ЖХ-МС – жидкостная хроматография с масс-спектрометрией

ИР – изотопное разбавление

ИР-МС – изотопное разбавление с масс-спектрометрией

хвозб. – длина волны возбуждения, нм

хрег. – длина волны регистрации, нм

ЧС – чрезвычайные ситуации

СИЗ – средства индивидуальной защиты

Оглавление

Реферат	5
Обозначения и сокращения	6
Введение	9
Глава 1. Литературный обзор	12
1.1. Физико-химические свойства витаминов	12
1.1.1 Физико-химические свойства витамина В ₁	12
1.1.2 Физико-химические свойства витамина B_2	13
1.1.3 Физико-химические свойства витамина В ₃	14
1.1.4 Физико-химические свойства витамина B_5	15
1.1.5 Физико-химические свойства витамина В ₆	15
1.1.6 Физико-химические свойства витамина В ₉	16
1.1.7 Физико-химические свойства витамина B_{12}	17
1.2 Методы определения витаминов группы В	19
1.4 Влияние рН на аналитический сигнал при спектрофо	тометрическом
определении	22
Глава 2. Экспериментальная часть	24
2.1 Оборудование, химическая посуда	24
2.2. Реактивы	26
2.3. Объекты исследования	27
2.4 Методика эксперимента	29
2.4.1 Методика флуориметрического определения	некоторых
водорастворимых витаминов	29
2.4.2 Метолика пробополготовки	30

Глав	a 4.	Финансовый	менеджмент,	ресурсоэффекти	вность и
pecy	рсосбере	жение			33
4.1.	Общая ха	рактеристика НИ	P		33
4.1.	Оценка	коммерческого	потенциала и	перспективности	проведения
науч	ных иссл	едований с позиц	ии ресурсоэффек	тивности и ресурсо	осбережения
•••••	•••••	•••••	•••••		34
4.1.1	Потенци	альные потребите	ели результатов и	сследования	34
4.1.2	.Анализ і	конкурентных тех	нических решени	ий	34
4.1.3	. SWOT-a	анализ	•••••		35
4.2. 1	Планиров	вание научно-иссл	едовательских ра	абот	39
4.2.1	Структу	ра работ в рамках	научного исслед	ования	39
4.3.]	Бюджет н	аучно-техническо	ого исследования	(НТИ)	46
4.3.1	. Расчет и	материальных зат	рат НТИ		46
4.3.2	Расчет за	атрат на оборудов	вание для научно-	экспериментальнь	іх работ47
4.3.3	Расчет о	сновной заработн	ой платы		48
4.3.4	Отчисле	ния во внебюдже	гные фонды (стра	аховые отчисления)50
4.3.5	Накладн	ые расходы			50
4.3.6	Формир	ование бюджета з	атрат НТИ		51
4.4.	Определе	ение ресурсной (р	ресурсосберегают	цей), финансовой,	бюджетной,
соци	альной и	экономической э	ффективности ис	следования	51
Спис	сок публи	каций по НИР			55

Введение

Актуальность работы. На сегодняшний день родителей беспокоит необходимость приема витаминов, эффективность и безопасность использования определенных витаминных комплексов для своих детей, а также вопрос о том, каким именно витаминам следует отдавать предпочтение и почему.

Научно доказано, что недостаток витаминов в пище приводит к развитию гиповитаминоза. При употреблении в пищу фруктов и овощей не исключены аллергические проявления у ребенка к тому или иному продукту питания. На основании чего, для обеспечения поступления достаточного количества витаминов в организм ребенка, родители зачастую отдают предпочтение коммерческим витаминам, витаминно-минеральным комплексам и биологически активным добавкам (БАД).

Производство БАД недостаточно контролируется законодательством, зачастую невозможно сделать вывод об их составе и безопасности, так как производитель не всегда указывает данную информацию на упаковке продукции.

Интерес к исследованию детских БАД возникает в основном из-за широкого потребления подобной продукции среди населения и массовыми продажами на фармацевтическом рынке. Большинство детских БАД могут не соответствовать нормам по количеству витаминов в своем составе.

Целью научно-исследовательской работы (НИР) является определение содержания ряда водорастворимых витаминов группы В в составе детских БАД методом флуориметрии.

Достижение поставленной цели предполагает решение следующих задач:

1) исследовать спектральные свойства витаминов группы В методами спектрофотометрии и флуориметрии;

- 2) разработать методику совместного определения витаминов группы В в образцах коммерческих детских БАД методом флуориметрии;
- 3) разработать методику пробоподготовки образцов, содержащих витамины группы В;
- 4) провести количественный анализ витаминов группы В в составе коммерческих детских БАД методом флуориметрии.

В качестве объектов исследования были выбраны наиболее популярные коммерческие детские БАД: «Алфавит» (производство Россия), «М.V. Тееп» (производство США).

Научная новизна.

Впервые изучены закономерности влияния рН при многокомпонентном определении витаминов группы В методом флуориметрии. Ранее, опираясь на источники литературы, витамины группы В определяли при рН<7. При том, что совместного флуориметрического определения витаминов: B_1 , B_2 , B_3 , B_6 , B_9 не проводилось. В работе предложена методика пробоподготовки, и подобрано значение рН среды для совместного определения витаминов группы В.

Практическая значимость.

Разработанная методика может быть рекомендована для использования в фармацевтической отрасли, медицинских учреждениях и лабораториях, занимающиеся разработкой и исследованием БАД.

Предложенный метод флуориметрического определения некоторых водорастворимых витаминов группы В по сравнению со спектрофотометрическим более чувствителен и позволяет добиваться более низких пределов обнаружения. Кроме того, флуориметрия характеризуется большей селективностью, т.к. люминесценцией обладает меньший круг соединений, в то же время избирательность можно повысить подбором длин возбуждения и регистрации сигнала, изменением рН раствора.

Апробация работы. Основные результаты ВКР докладывались и обсуждались на:

- 1. XIX Международной научно-практической конференции имени профессора Л.П. Кулева студентов и молодых учёных «Химия и химическая технология в XXI веке» (Томск, 2018);
- 2. XX Международной научно-практической конференции имени профессора Л.П. Кулева студентов и молодых учёных «Химия и химическая технология в XXI веке» (Томск, 2019).

Публикации. По результатам НИР опубликовано 4 печатные работы.

Структура и объем работы. ВКР изложена на 95 страницах машинописного текста, содержит: 30 рисунков, 40 таблиц, состоит из введения, 5 глав, заключения, списка цитируемой литературы, включающего 69 наименований.

Глава 1. Литературный обзор

1.1. Физико-химические свойства витаминов

Перед началом исследования был проведен литературный обзор по методам определения ряда водорастворимых витаминов группы $B_1, B_2, B_3, B_6, B_{12}$.

1.1.1 Физико-химические свойства витамина В₁

Витамин B_1 , иначе тиамина гидрохлорид, имеет следующую химическую формулу, представленная на рис.1.1.1:

Рисунок 1.1.1.1 – Витамин B_1 – 3-[(4-амино-2-метил-5-пиримидил) метил]-5- (2-гидроксиэтил)-4-метил-тиазол [1]

Тиамин (B_1) — водорастворимый витамин, представляющий собой бесцветные кристаллы с горьким вкусом. Водные растворы B_1 в кислой среде устойчивы и выдерживают нагревание до высоких температур, однако в щелочной среде быстро разрушается. При окислении он переходит в тиохром — соединение, обладающее ярко-синей флуоресценцией [2].

 B_1 обладает антиоксидантной, эритропоэтической, модулирующей настроение и регулирующей глюкозу активностями. Он реагирует с аденозинтрифосфатом (АТФ) с образованием активного кофермента, тиаминпирофосфата, играет ключевую роль во внутриклеточном

метаболизме глюкозы и может ингибировать действие глюкозы и инсулина на пролиферацию клеток гладких мышц артерий. Тиамин также может защищать от свинцового отравления, ингибируя вызванное свинцом перекисное окисление липидов.

1.1.2 Физико-химические свойства витамина В2

Витамин В2, иначе рибофлавин, формулу которого можно увидеть на рисунке 1.1.2.1, – это водорастворимый витамин, представляющий собой кристаллы игольчатой формы, окрашенные в желто-оранжевый цвет, горькие на вкус. В2 химически неустойчив, легко разрушается при кипячении и на Под действием 6.7свету. света распадается на рибит И диметилизоаллоксазин или люмихром [2]. Присоединяя водород по месту двойных связей, окрашенный рибофлавин легко превращается в бесцветное лейкосоединение. Отдавая при соответствующих условиях водород, снова переходит в рибофлавин, приобретая окраску. Витамин В2 участвует в окислительно-восстановительных процессах живых организмов. Этот витамин необходим для здоровой кожи, ногтей и волос.

Рисунок 1.1.2.1 — Витамин B_2 — 6,7-Диметил-9-(D-1-ибитил) - изоаллоксазин [3]

Витамин B_2 (рибофлавин) выполняет важные функции в организме - он необходим для правильного функционирования центральной и периферической нервной системы и иммунной системы.

Вместе с витамином А он отвечает за хорошее состояние слизистых оболочек, включая слизистую оболочку пищеварительного канала, кожу и эпителий кровеносных сосудов. Предполагается, что рибофлавин участвует в образовании эритроцитов и крови.

1.1.3 Физико-химические свойства витамина В3

Никотиновая кислота иначе витамин B_3 (рисунок 1.1.3.1) — водорастворимый витамин, представляющий собой белое кристаллическое вещество, без запаха, слабокислое на вкус. B_3 образует соли с кислотами и основаниями, его соли с Ag, Cu(II) и Са плохо растворимы в воде. Никотиновая кислота умеренно растворима в холодной и горячей воде, мало растворима в этиловом спирте (96%), практически нерастворима в эфире [4].

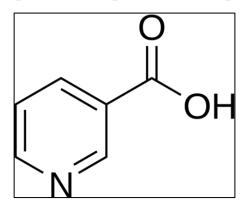


Рисунок 1.1.3.1 – Витамин В₃ – Пиридин-3-карбоновая кислота [4]

Витамин B_3 играет ключевую роль в коже, пищеварении и психическом здоровье и поддерживает функции более 200 ферментов в организме. Люди, которые не получают достаточно витамина B_3 , могут испытывать целый ряд проблем со здоровьем и симптомов, от незначительных до угрожающих жизни.

1.1.4 Физико-химические свойства витамина В5

Пантотеновая кислота, также называемая пантотенатом или витамином B_5 , является водорастворимым витамином. Представляет собой вязкую светло-желтую маслянистую жидкость, которая хорошо смешивается с водой и уксусной кислотой. Биологической активностью обладает только правовращающий (+) оптический изомер B_5 . Пантотеновая кислота малоустойчива, легко окисляется и гидролизуется в присутствии кислот и щелочей по месту пептидной (-CO-NH-) связи. Структурная формула B_5 изображена на рис. 1.1.4.1:

Рисунок 1.1.4.1 – Витамин B_5 – 6,7-Диметил-9-(D-1-ибитил) - изоаллоксазин [5]

Основная функция этого водорастворимого витамина B_5 заключается в синтезе коэнзима A (CoA) и ацильного белка-носителя [6]. СоА необходим для синтеза и распада жирных кислот, переноса ацетильных и ацильных групп и множества других анаболических и катаболических процессов [6]. Основная роль белка-носителя ацила заключается в синтезе жирных кислот.

1.1.5 Физико-химические свойства витамина В6

Витамин B_6 , также известный как пиридоксин (рисунок 1.1.5.1), является водорастворимым витамином, представляющий собой белый мелкокристаллический порошок, горьковато-кислый на вкус. На свету и в щелочных растворах B_6 в форме гидрохлорида быстро разлагается. Химические свойства B_6 с одной стороны могут быть объяснены, свойствами

пиридинового цикла, с другой - свойствами заместителей, имеющихся в пиридиновом ядре.

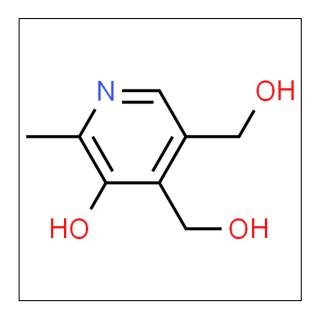


Рисунок 1.1.5.1 – Витамин B_6 – 4,5-дигидроксиметил-2-метилпиридин-3-ол, 4,5-дигидроксиметил-2-метилазин-3-ол [7]

Он важен для метаболизма белков, жиров и углеводов, а также для образования эритроцитов и нейротрансмиттеров. Потребление достаточного количества витамина B_6 важно для оптимального здоровья и может даже предотвращать и лечить хронические заболевания. Пиридоксин необходим для усвоения белков, жиров, углеводов, регулирует состояние нервной системы, предотвращает кожные заболевания и воспаления зубов и дёсен.

1.1.6 Физико-химические свойства витамина Во

В₉, иначе фолиевая кислота, формула которой представлена на рисунке 1.1.6.1, является членом семейства водорастворимых витаминов группы В, стимулирующих кроветворную систему. В₉ представляет собой игольчатые кристаллы желтого цвета, содержащие два моля кристаллизационной воды на один моль кислоты. Они стабильны на воздухе, разлагаются при 250 °C. Ограниченно растворимы в воде (25 мг/л), ледяной уксусной кислоте и

спиртах, не растворимы в эфире, ацетоне, хлороформе. Вещество фотолабильно.

Рисунок 1.1.6.1 — Витамин B_9 — N-4-2-амино-1,4-дигидро-4-оксо-6-птеридил) метиламинобензоил-L(+)-глутаминовая кислота [8]

Он присутствует в печени и почках и содержится в грибах, шпинате, дрожжах, зеленых листьях и травах (злаках). Фолиевая кислота, будучи биохимически неактивной, превращается в тетрагидрофолиевую кислоту и метилтетрагидрофолат с помощью дигидрофолатредуктазы. Фолиевая кислота используется для лечения и профилактики фолиевой недостаточности и мегалобластной анемии.

1.1.7 Физико-химические свойства витамина В₁₂

Цианокобаламин, широко известный как витамин B_{12} , отличающийся от всех других водорастворимых витаминов группы В большой сложностью своей структуры (рисунок 1.1.7.1). B_{12} представляет собой порошок, темнокрасного цвета, без запаха, горький на вкус. Ковалентная связь углерод-

кобальт в структуре цианокобаламина — единственный известный в живой природе пример ковалентной связи переходный металл-углерод.

Рисунок 1.1.7.1 — Витамин B_{12} - 5,6-диметилбензимидазолилкобамид цианид [9]

Витамин B_{12} является очень сложным, незаменимым витамином, благодаря своему названию, потому что он содержит минерал кобальт. Этот витамин естественным образом вырабатывается бактериями и необходим для синтеза ДНК и выработки клеточной энергии. Витамин B_{12} имеет много форм, включая циано-, метил-, дезоксиаденозил- и гидроксикобаламин.

Цианоформа является наиболее широко используемой формой в добавках и отпускаемых по рецепту лекарствах.

1.2 Методы определения витаминов группы В

С ростом интереса к точному определению количества каждого добавках были поливитаминных введены витамина различные для количественной оценки аналитические методы водорастворимых витаминов. Среди них методы, основанные на ВЭЖХ (высокоэффективная жидкостная хроматография) [10-12]. Методы ВЭЖХ обычно сочетаются с УФ (ультрафиолетовыми) [13-16], УФ / электрохимическими [17] или флуоресцентными детекторами [18, 19], масс-спектрофотометрическими (MC) [20–24], УФ / MC [25] или с диодно-матричным детектором с MC [26]. флуоресцентным детектированием Хотя ИЛИ детекция флуоресценции чувствительна и избирательна, она требует дериватизации целевых витаминов, за исключением естественных флуоресцентных молекул, таких как пиридоксин и рибофлавин [19]. В большинстве опубликованных исследований, относящихся к жидкостной хроматографии с диодноматричным детектированием (ЖХ-ДМД) или к жидкостной хроматографии с масс-спектрометрией (ЖX-MC), анализ водорастворимых витаминов рассматривался только один или несколько витаминов одновременно, и сообщалось только о нескольких методах одновременного определения нескольких водорастворимых витаминов в поливитаминных добавках [16, 21–23, 25]. В некоторых исследованиях применялся метод МС изотопного разбавления (ИР) [21, 22], в котором использовался внутренний стандарт, помеченный изотопом, для обеспечения наилучшей точности. Поскольку метод ИР-МС работает только с масс-спектрометром и требует затрат на маркированные материалы, ЭТОТ метод не очень подходит ДЛЯ универсального анализа. Насколько нам известно, ни в одном отчете не предложен общий метод определения витаминов группы В, включая

цианокобаламин, в поливитаминных добавках при полном разделении и оптимизированных условиях экстракции. Разработка общего метода одновременного определения различных витаминов группы В является сложной задачей по нескольким причинам. Хотя различные соединения могут считаться частью витаминов группы В, они редко обладают общими химическими свойствами с точки зрения разделения в колонке LC из-за их различной химической структуры. Каждый витамин в группе В обладает различной стабильностью с точки зрения рН, света, воздуха и тепла, а некоторые витамины требуют специальных стабилизаторов.

распространенных Существует много одновременного методов определения группы Β, как, УФ-видимая витаминов таких спектрофотометрия, синхронная спектрофлуориметрия с переменным углом, поточная инжекционная флуориметрия, производная спектрофотометрия, отношение спектров-производных И трехмерная флуоресцентная спектрометрия, путем определения общей интенсивности флуоресценции [27].

Так же, к методам определения витаминов группы В относят классический гравиметрический [28,29] и титриметрический методы [30,31], электрохимический метод анализа [32–37], тонкослойная хроматография [38,39], газовая хроматография [40,41], капиллярный электрофорез [42–44], высокоэффективная жидкостная хроматография [44–48], флуориметрия [48–51], а также спектрофотометрия [52–62] и т. д. В настоящее время наиболее распространенными методами являются: высокоэффективная жидкостная хроматография, флуориметрия и спектрофотометрия.

Метод высокоэффективной жидкостной хроматографии, используемый для определения витаминов группы В имеет высокую чувствительность, хорошую избирательность и возможность одновременного многокомпонентного определения. Поэтому этот метод широко использовался для изучения и применения, особенно для разделения и определения сложных образцов.

Флуориметрия, используемая для определения B_1 , основана главным образом на флуоресценции тиохрома, полученном окислением тиамина гидрохлорида различными окислителями. Этот метод имеет высокую чувствительность и пригоден для определения следов B_1 .

Спектрофотометрия по-прежнему является одним из распространенных методов определения B_1 благодаря его простоте и высокой точности. В настоящее время наиболее изученным и применяемым методом является ультрафиолетовая спектрофотометрия [41–45]. В последние годы основным улучшением является многокомпонентное определение с использованием дифференциальной и производной спектрофотометрии [51–54] и хемометрики [55–58].

Согласно ГОСТ 32042-2012 [63] тиамин гидрохлорид можно определить методом измерения интенсивности флуоресценции. Сущность метода заключается в извлечении витамина B_1 из анализируемой пробы раствором соляной кислоты, окислении его раствором железосинеродистого калия в тиохром, экстракции окисленной формы из водной фазы бутанолом и измерении интенсивности флуоресценции.

Проведенный литературный обзор ПО анализу определения водорастворимых витаминов показывает, ЧТО интерес к витаминам неуклонно растет. Анализ может быть проведен различными физикохимическими методами, в зависимости от витамина и способа его точной идентификации. Наиболее часто ДЛЯ совместного определения водорастворимых витаминов группы В используют метод ВЭЖХ с различным детектированием.

Изучив литературу, мы видим, что по сей день витамины группы В были определены лишь индивидуально как в образцах пищевых продуктов, так и в фармацевтических составах с использованием различных аналитических методов, таких как спектрофотометрический, спектрофлуориметрический и электрохимический, а также такими методами разделения, как электрофорез в капиллярной зоне и ВЭЖХ [60]. Поскольку

спрос на быстрый и специфический метод для совместного определения витаминов растет, методы ВЭЖХ обеспечивают быстрое разделение и количественное определение водорастворимых витаминов в нескольких матрицах. Выбор метода во многом зависит от требуемой точности и чувствительности, а также от помех, встречающиеся в образце матрицы.

1.4 Влияние рН на аналитический сигнал при спектрофотометрическом определении

Максимум поглощения витамина B_1 в нейтральной среде соответствует 256,2 нм. В большинстве случаев максимум поглощения витамина B_1 под влиянием кислот в области 254-264 нм [64].

Детектирование, идентификацию и количественный расчет массовой концентрации (массовой доли) водорастворимых витаминов проводят при максимуме длины волны излучения, индивидуальном для каждого витамина (таблица 1.4.1):

Таблица 1.4.1 — Параметры идентификации витаминов B_2 и B_6 методом флуориметрии [64]

Витамин	Длина волны возбуждения, нм	Длина волны испускания, нм
B_2	290 ± 2	395 ± 2
B_{6}	450 ± 2	521 ± 2

Никотинамид имеет спектры поглощения при 261,5 нм при различных значениях рH среды.

На рисунке 1.4.1 представлены спектры поглощения водных растворов рибофлавина при различных значениях рН.

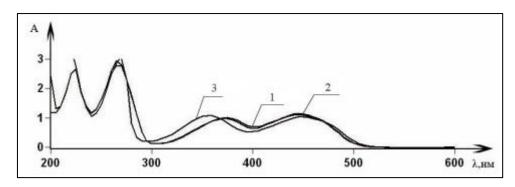


Рисунок 1.4.1 - Спектр поглощения водного раствора рибофлавина при различных значениях pH: 1 — в кислой среде с pH 1,5; 2 — в нейтральной среде с pH 6,5; 3 — в щелочной среде с pH 12,5 [65]

Спектр поглощения витамина B_2 расположен в видимой и ультрафиолетовой областях. В кислой и нейтральной среде рибофлавин максимально поглощает при 445, 375, 265 и 225 нм. В щелочной среде спектр поглощения рибофлавина несколько смещается в коротковолновую область и имеет максимумы при 450, 355, 270, 210 нм.

Витамин В₆ демонстрирует максимум при 292 нм в кислотных растворах (рН <2,5), а витамины B_2 , B_1 и B_9 при 372, 256 и 285 нм соответственно [65]. Увеличение рН, вызывающее значительное увеличение сдвига, является явным свидетельством наличия других депротонированных форм этих витаминов. Присутствие изобестических точек показывает различные протонированные формы, и они связаны друг с другом протонированными/депротонированными равновесиями. Количество высвобождаемых протонов в указанных интервалах рН составляет 1, 2, 3 и 3 рибофлавина, фолиевой ДЛЯ пиридоксина, тиамина И кислоты, соответственно. Все молекулы имеют четкие изобестические точки при регулярном изменении рН.

Глава 2. Экспериментальная часть

2.1 Оборудование, химическая посуда

Для определения качественного и количественного содержания некоторых витаминов группы В в составе испытуемых образцов в начале работы проводилось исследование спектров поглощения на спектрофотометре Ag-ilent Technologies «Cary 60» и спектрофлуориметре «Флюорат-02-Панорама» компании Люмэкс.

Agilent Спектрофотометр Cary 60 прибор, высокой производительностью, предназначенный для осуществления химического анализа. В аппарате предусмотрено использование импульсной ксеноновой В базовый лампы непрерывного действия. блок аппарата включён монохроматор с диапазоном длин волн от 119 до 1100 нм и фиксированной шириной щели 1,5 нм. Также входят спаренный диодный кремниевый детектор и просветлённая кварцевая оптическая система. Прибор при максимальной скорости развёрстки может просканировать необходимый диапазон спектра за 3 сек. Спектрофотометр Cary 60 работает \mathbf{c} небольшими объемами образцов. Особенности спектрофотометра: применение экономных ксеноновых ламп; расширенное программное обеспечение с готовыми методиками, улучшенной графикой и калькулятором спектров; сбор данных 80 раз в секунду. Важные технические характеристики прибора: точность длин волн до 0,06 нм; фотометрический шум менее 0,00002 А; со скоростью сканирования выше 20000 нм/мин.

Спектрофлуориметр «Флюорат-02-Панорама» предназначен для измерения массовой концентрации неорганических и органических примесей в воде, а также в воздухе, почве, технических материалах, продуктах питания после переведения примесей в раствор или непосредственно без пробоподготовки в соответствии с методикой выполнения измерений. Область

применения спектрофлуориметра _ аналитический контроль объектов санитарный контроль, окружающей среды, контроль технологических процессов, а также научные исследования. Прибор может быть использован в качестве автоматического детектора при исследовании спектров возбуждения и регистрации люминесценции, и изучения фотометрических характеристик и фосфоресценции анализируемых объектов, характеристик также хроматографии. Особенности прибора: спектральный диапазон оптического излучения, используемого для анализа: 210- 730 нм; предел погрешности установки длины волны не более 3 нм; дрейф показаний не более половины предела допускаемого значения его основной погрешности; кварцевые кюветы K-10. Спектрофлюориметр измерений: имеет два основных режима флуориметрический и фотометрический.

При приготовлении растворов для тщательного растворения исследуемых веществ использовалась ультразвуковая ванна «DADI DA-968». Объем бака составлял 500 мл; напряжение питания до 220 В; настраиваемая мощ-ность генератора: 30 или 50 Вт; время работы прибора от 1 до 59 мин.

Для полного осаждения образующегося осадка и во избежание мутных растворов применялась центрифуга «Centrifuge 5702 R» от компании «Eppendorf». Технические особенности прибора: настраиваемый диапазон температур от -9°C до +40 °C; скорость вращения до 4400 об/мин.; возможность настройки оптимального времени центрифугирования.

Для измерения уровня рН исследуемых растворов использовали «рН-метр СНЕСКЕР» фирмы «ООО ЭкоИнструмент». Электронный карманный рН-метр «СНЕСКЕР» предназначен для определения рН жидкостей, для определения в численных значениях рН степени кислотности или щелочности жидкостей. Основные характеристики прибора: диапазон измерения от 1,00 до 14,0 рН; погрешность до 0,2 рН; разрешение: 0,01 рН.

Для получения дистиллированной воды использовали аквадистиллятор «STEDIM ARIUM 61316» от производителя «SARTORIUS». Который позволяет получать ультрачистую воду для приготовления буферов, выведения клеточных культур и при работе с хроматографией.

Для взвешивания навесок вещества использовали лабораторные аналитические весы «Acculab ALC-210d4» (производство «Sartorius Weight Technology GmbH», Германия) с I классом точности по ГОСТ 24104-2001.

В работе была задействована мерная лабораторная стеклянная посуда: колбы вместимостью 25,0; 50,0; 100,0; 500,0 и 1000,0 см³.

Взятие аликвот отбираемых веществ проводили с помощью мерных лабораторных стеклянных пипеток вместимостью 10,0 см³, а также дозаторов типа ДП-1-10, ДП-1-50, ДП-1-200, ДП-1-1000 с дискретностью установки доз 1,0 мкл и погрешностью не более 5 % отн. Для каждого раствора какого-либо вещества использовали отдельную пипетку или сменный наконечник дозатора.

Чистоту кювет определяли методом люминесцентного анализа. Перед началом каждой серии опытов снимали спектр фонового растворителя, с целью контроля его чистоты и чистоты посуды. В случае отсутствия пиков на спектре люминесценции, растворитель и посуда считались чистыми.

При разработке методики пробоподготовки для отделения водорастворимых витаминов от жирорастворимых витаминов в реальных объектах анализа использовалась делительная воронка объемом 50 см³.

2.2. Реактивы

В данной работе использовались следующие химические реактивы:

- Натрий гидроокись ГОСТ 4328-77 (ХИММЕД, Россия);
- Кислота соляная ГОСТ 33118-77 (СигмаТек, Россия);

- Стандарт-титры для приготовления стандартных буферных растворов: эквимолярная смесь дигидрофосфата калия KH₂PO₄ и гидрофосфата натрия Na₂PO₄ (рH=6,86) ТУ 2642-004-33813273-2006 (УралХимИнвест, Россия)
- Стандарт «Тиамина гидрохлорид», х.ч. (Sigma-Aldrich, США);
- Стандарт «Никотиновая кислота», х.ч. (Sigma-Aldrich, США);
- Стандарт «Рибофлавин», х.ч. (Sigma-Aldrich, США);
- Стандарт «Пиридоксина гидрохлорид», х.ч. (Sigma-Aldrich, США);
- Стандарт «Фолиевая кислота», х.ч. (Sigma-Aldrich, США);
- Спирт бутиловый нормальный (Н-бутанол), (ВитаХим, Новосибирск).

2.3. Объекты исследования

В ходе проведения исследования использовались следующие образцы коммерческих детских БАД: «Алфавит, Наш малыш, саше-пакетики» (Образцы 1-3), «Future Biotics, M.V. Teen, Мультивитамины для подростков» (Образец 4), состав которых указан в таблицах 2.3.1, 2.3.2, 2.3.3 и 2.3.4:

Таблица 2.3.1 - Состав «Образец №1» саше-пакет №1 [66]

Состав	Содержание
Витамин D3	5 мкг
Пантотенат кальция	1,25 мг
Витамин В12	0,35 мкг
Фолиевая кислота	25 мгк
Кальций	80 мг

Таблица 2.3.2 - Состав «Образец №2» саше-пакет №2 [66]

Состав	Содержание
Бета-каротин	0,67 мг
Витамин В2	0,45 мг
Витамин В6	0,45 мг
Никотинамид	4 мг
Витамин Е	2 мг
Витамин С	11,25 мг
Магний	8 мг
Цинк	2,5 мг
Йод	35 мкг

Таблица 2.3.3 - Состав «Образец №3» саше-пакет №3 [66]

Состав	Содержание
Бета-каротин	0,6 мг
Витамин В1	0,4 мг
Витамин С	11,25 мг
Фолиевая кислота	25 мгк
Железо	5 мг

Таблица 2.3.4 - Состав «Образец №4» [67]

Компоненты	Количество
	на порцию
Витамин А (в виде бета-каротина)	3000 мкг
Витамин С (в виде аскорбиновой кислоты)	60 мг
Витамин D3 (как холекальциферол)	10 мкг
Витамин Е (как токоферилсукцинат d-альфа)	20 мг

Продолжение таблицы 2.3.4

Тиамин (витамин В1) (в виде мононитрата тиамина)	2 мг
Рибофлавин (Витамин В2)	2 мг
Ниацин (в виде ниацинамида)	20 мг
Витамин В6 (в виде пиридоксин гидрохлорида)	2 мг
Фолиевая кислота (400 мкг фолиевой кислоты)	666,8 мкг
Витамин В12 (как цианокобаламин)	6 мкг
биотин	300 мкг
Пантотеновая кислота (как пантотенат d-кальция)	10 мг
Кальций (как карбонат кальция)	100 мг
Железо (как феррохел, железистый бисглицинат хелат)	10 мг
Йод (как йодистый калий)	150 мкг
Магний (как оксид магния)	50 мг
Цинк (как глюконат цинка)	15 мг
Селен (в виде аминокислотного комплекса селена)	100 мкг
Медь (как глюконат меди)	2 мг
Марганец (в виде марганцево-глицинатного хелата)	4 мг
Хром (как никотинат хрома, глицинат хелат)	100 мкг

2.4 Методика эксперимента

2.4.1 Методика флуориметрического определения некоторых водорастворимых витаминов

Фоновый буферный раствор, объемом 3 мл, помещали в кювету. Кювету устанавливали в кюветное отделение, закрывали крышку и снимали синхронный спектр исследуемого вещества в диапазоне длин волн 200 – 650 нм. Далее в кювету помещали анализируемые стандартные растворы исследуемых

витаминов с концентрацией 0,05 мг/мл и снимали спектр флуоресценции в аналогичных условиях. На спектре выделяли длину волны возбуждения в зависимости от определяемого витамина (таблица 2.4.1.1) и снимали спектр флуоресценции со смещением 20 нм от значения длины волны возбуждения. Полученный спектр флуоресценции применяли для качественного и количественного анализа вещества в реальном объекте.

В табл. 2.4.1.1 представлены зависимости длины волн возбуждения и регистрации рН среды для каждого исследуемого витамина:

Таблица 2.4.1.1 - Зависимости длин волн возбуждения и регистрации

Исследуемый витамин	рН среды	Длина волны возбуждения, нм	Длина волны регистрации, нм
B_1	>7	268	445
B_2	6,86	370	528
B_3	6,86	260	403
B_6	6,86	325	398
B ₉	6,86	280	445

2.4.2 Методика пробоподготовки

Образец 1

Порошок исследуемого образца был приготовлен путем растворения содержимого в 100 мл 0,1н HCl. Далее полученный раствор ставили на ультразвуковую ванну для полного растворения вещества и фильтровали 2 раза через бумажный фильтр (красная лента), после чего раствор центрифугировали и подщелачивали 0,2н NaOH до нейтрального значения рН среды. В кюветное

отделение помещали кювету с анализируемым раствором, устанавливали длину волны возбуждения $280\,$ нм и снимали спектр регистрации флуоресценции витамина B_9 . Измерения проводили не менее трех раз.

Образец 2

Порошок исследуемого образца был приготовлен путем растворения содержимого в 100 мл 0,1н HCl. Далее полученный раствор ставили на ультразвуковую ванну для полного растворения вещества и фильтровали 2 раза через бумажный фильтр (красная лента), после чего раствор центрифугировали и подщелачивали 0,2н NaOH до нейтрального значения рН среды. В кюветное отделение помещали кювету с анализируемым раствором, устанавливали длину волны возбуждения 260, 280 и 370 нм и снимали спектр регистрации флуоресценции витаминов B₃, B₂ и B₉ соответственно. Измерения проводили не менее трех раз.

Образец 3

Порошок исследуемого образца был приготовлен путем растворения содержимого в 100 мл 0,1н НС1. Далее полученный раствор ставили на ультразвуковую ванну для полного растворения вещества и фильтровали 2 раза через бумажный фильтр (красная лента), после чего раствор центрифугировали и подщелачивали 0,2н NаОН до нейтрального значения рН среды. В кюветное отделение помещали кювету с анализируемым раствором, поочередно устанавливали следующие длины волн возбуждения: 260, 280, 325 и 370 нм и записывали соответствующие им спектры регистрации флуоресценции витаминов В2, В3, В6 и В9. Для определения витамина В1 к 4 мл отцентрифугированного раствора добавляли 2 мл подщелочённого раствора К3Fe(CN)6, полученный раствор анализировали при длине волны возбуждения 268 нм. Измерения проводили не менее трех раз.

Образец 4

Порошок исследуемого образца был приготовлен путем растворения содержимого в 100 мл 0,1н НС1. Далее полученный раствор ставили на ультразвуковую ванну для полного растворения вещества и фильтровали 2 раза, после чего раствор отправлялся на центрифугирование. Отцентрифугированный раствор подщелачивали 0,2н NaOH до нейтрального значения рН среды. В кювету с анализируемым кюветное отделение помещали раствором, устанавливали длину волны возбуждения 260, 280, 325 и 370 нм и снимали спектр регистрации флуоресценции витаминов B_3 , B_2 , B_6 и B_9 соответственно. Для определения витамина B_1 к 4 мл отцентрифугированного раствора добавляли 2 мл подщелочённого раствора K_3 Fe(CN)₆, полученный раствор анализировали при длине волны возбуждения 268 нм. Измерения проводили не менее трех раз.

Глава 4. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение

4.1. Общая характеристика НИР

Научно доказано, что недостаточное поступление витаминов с пищей приводит к развитию гиповитаминоза. В современном мире родители часто задаются многими вопросами, беспокоясь о здоровье своих детей: хватает ли ребёнку витаминов для нормального развития организма, какие витамины необходимы для жизнедеятельности, каким именно витаминным комплексам следует отдавать предпочтение и почему, а главное, эффективны и безопасны ли они?

На основании чего, для обеспечения поступления достаточного количества витаминов в организм ребенка, родители обычно отдают предпочтение коммерческим витаминам, витаминно-минеральным комплексам и биологически активным добавкам (БАД).

В России производство БАДов, в отличие от производства лекарственных препаратов, не строго контролируется законодательством. Зачастую невозможно сделать вывод об их составе и безопасности, так как производитель не всегда указывает данную информацию на упаковке продукции.

Объектами исследования служили наиболее популярные коммерческие БАД: ««Алфавит» (производство Россия), «М.V. Тееп» (производство США).

Согласно литературным данным существуют множество методов для определения витаминов группы В. Согласно ОФС их определение можно выполнять с использованием спектрофотометрического метода анализа. Однако этот метод не позволяет совместно идентифицировать витамины группы В ввиду наложения полос поглощения. Для решения этой проблемы в данной работе было предложено использовать метод флуориметрии.

4.1. Оценка коммерческого потенциала и перспективности проведения научных исследований с позиции ресурсоэффективности и ресурсосбережения

4.1.1 Потенциальные потребители результатов исследования

Интерес к исследованию детских БАД возникает в основном из-за широкого потребления подобной продукции среди населения и массовыми продажами на фармацевтическом рынке. Так как объектами исследования служили детские биологически — активные добавки, то и предназначена данная продукция для детей в возрасте от 3 лет. Но это не означает, что взрослые в свою очередь не могут быть заинтересованы в приобретении данного товара.

4.1.2. Анализ конкурентных технических решений

В настоящее время для определения витаминного состава в лекарственных препаратах и фармацевтических комплексах могут быть применимы различные методы, однако большинство из них обладают рядом недостатков.

Рассмотрим следующие методы, которые используются для определения водорастворимых витаминов: спектрофотометрический метод анализа (ОФС.1.2.3.0017.15) и метод высокоэффективной жидкостной хроматографии.

Анализ конкурентных технических решений определяется по формуле:

$$K = \sum B_i \cdot B_i \tag{4.1}$$

где: К — конкурентоспособность научной разработки или конкурента; B_i — вес показателя (в долях единицы); $\overline{b_i}$ — балл i-го показателя.

Целесообразно анализ конкурентных технических решений проводить с помощью оценочной карты таблица 4.1.2.1.

Таблица 4.1.2.1 — Оценочная карта сравнения для сравнения конкурентных технических решений (разработок)

Критерии оценки	Вес критерия	Баллы		Конкуренто- способность			
• •		F_{Φ}	$\mathbf{F}_{\kappa 1}$	$F_{\kappa 2}$	K_{ϕ}	$K_{\kappa 1}$	К _{к2}
1	2	3	4	5	6	7	8
Технические критерии оценки ресурсоэффективности							
1.Точность определения	0.2	4	3	3	0.8	0.6	1
2.Экспрессность	0.2	5	5	3	1	1	0.6
3.Простота эксплуатации	0.2	5	5	3	1	1	0.6
Экономические критерии оценки эффективности							
1. Цена	0.2	5	5	2	1	1	0.4
2. Предполагаемый срок эксплуатации	0.1	5	4	4	0.5	0.4	0.4
3. Стоимость оборудования	0.1	5	5	3	0.5	0.5	0.3
Итого	1	29	27	18	4.8	4.5	3.3

Анализ был проведен сравнительно с двумя методами анализа: конкурент 1 — «Спектрофотометрический метод ОФС.1.2.3.0017.15», конкурент 2 — «Метод высокоэффективной жидкостной хроматографии». По итогам анализа оценочной карты можно сделать вывод, что научная разработка, описываемая в данной НИР, является конкурентно-способной. Следовательно, можно отметить, что основными конкурентами метода флуориметрии является спектрофотометрический анализ.

4.1.3. SWOT-анализ

SWOT – (Strengths – сильные стороны, Weaknesses – слабые стороны, Opportunities – возможности и Threats – угрозы) – это комплексный анализ научно-исследовательского проекта. SWOT – анализ применяют для исследования внешней и внутренней среды проекта и состоится из нескольких этапов.

На первом этапе рассматривали сильные и слабые стороны проекта, а также выявлении возможностей и угроз.

Таблица 4.1.3.1 – Результаты первого этапа SWOT-анализа

	Сильные стороны научно- исследовательского проекта:	Слабые стороны научно- исследовательского проекта:
	С1. Экспрессность	Сл1. Подбор
	С2. Простота эксплуатации	пробоподготовки
	С3. Низкие затраты на	Сл2. Наличие желатина и
	пробоподготовку	сахара в составе БАД
	С4. Широта объектов для	Сл3. Сложность эксперимента
	анализа	при работе с матрицей
	С5. Селективность	объектов
Возможности:		
В1. Разработка методики		
для оценки качества		
детских БАД		
В2. Возможность		
обнаружения объектов с		
малой концентрацией		
исследуемого вещества		
В3. Перспективы		
внедрения флуориметрии		
в качестве метода анализа		
в фармацевтической		
промышленности		
Угрозы: У1. Развитие		
конкурентных методов		
анализа		
У2. Добавление в		
рецептуру БАД		
компонентов, влияющих		
на матрицу объекта с		
невозможной дальнейшей		
идентификацией состава		
У3. Повышение		
стоимости оборудования		

На втором этапе SWOT – анализа рассматривает соответствия сильных и слабых сторон научно-исследовательского проекта внешним условиям окружающей среды. Это соответствие или несоответствие должны помочь выявить степень необходимости проведения стратегических изменений.

В рамках данного этапа необходимо построить интерактивную матрицу проекта. Ее использование помогает разобраться с различными комбинациями взаимосвязей областей матрицы SWOT. Каждый фактор помечается либо знаком «+» (означает сильное соответствие сильных сторон возможностям), либо знаком «-» (что означает слабое соответствие); «0» — если есть сомнения в том, что поставить «+» или «-».

Интерактивные матрицы проекта представлены в таблицах 4.1.3.2, 4.1.3.3, 4.1.3.4, 4.1.3.5,

Таблица 4.1.3.2 – Интерактивная матрица проекта «Сильные стороны и возможности»

Сильные стороны проекта								
		C1	C2	C3	C4	C5		
Возможности	B1	+	+	+	+	+		
проекта	B2	+	0	0	+	+		
	B3	+	+	+	+	0		

Таблица 4.1.3.3 – Интерактивная матрица проекта «Слабые стороны и возможности»

Слабые стороны проекта							
		Сл1	Сл2	Сл3			
Возможности	B1	-	-	-			
проекта	B2	0	-	-			
	B3	-	-	-			

Таблица 4.1.3.4 – Интерактивная матрица проекта «Сильные стороны и угрозы»

Сильные стороны проекта							
У1		C1	C2	C3	C4	C5	
	У1	-	-	-	+	-	
Угрозы	У2	-	-	1	+	-	
	У3	1	+	+	-	+	

Таблица 4.1.3.5 – Интерактивная матрица проекта «Слабые стороны и угрозы»

Слабые стороны проекта							
		Сл1 Сл2		Сл3			
17	У1	+	-	+			
Угрозы	У2	-	+	+			
	У3	-	+	+			

Таким образом, в рамках третьего этапа может быть составлена итоговая матрица SWOT-анализа, представленная в таблице 4.1.3.6.

Таблица 4.1.3.6 – Итоговая матрица SWOT-анализа

	-	
	Сильные стороны научно-	Слабые стороны научно-
	исследовательского	исследовательского
	проекта:	проекта:
	С1. Экспрессность	Сл1. Подбор
	С2. Простота эксплуатации	пробоподготовки
	С3. Низкие затраты на	Сл2. Наличие желатина и
	пробоподготовку	сахара в составе БАД
	С4. Широта объектов для	Сл3. Сложность эксперимента
	анализа	при работе с матрицей
	С5. Селективность	объектов
Возможности:	Сила и возможности:	Слабость и возможности:
В1. Разработка методики	СВ1. Использование метода	СлВ1. При разработки
для оценки качества	флуориметрии для оценки	методики для оценки качества
детских БАД	качества детских БАД	БАД будет предложена
В2. Возможность	СВ2. Исключение	пробоподготовка,
обнаружения объектов с	некачественных БАД с	позволяющая
малой концентрацией	рынка	идентифицировать
исследуемого вещества	СВ3. Качественное и	компоненты в составе
В3. Перспективы	количественное определение	исследуемых объектов
внедрения флуориметрии	исследуемых витаминов	СлВ2. После избавления
в качестве метода анализа		мешающего влияния
в фармацевтической		желатина и сахара на матрицу
промышленности		исследуемых объектов метод
		флуориметрии позволит с
		высокой точностью
		определять нужные вещества
		при любых концентрациях
		СлВ3. Возможность
		применения метода
		флуориметрии при анализе
		более сложных объектов БАД

Продолжение таблицы 4.1.3.6

Угрозы:	Сила и угрозы:	Слабость и угрозы:
У1. Развитие	СУ1. Метод флуориметрии	СлУ1. Наиболее экспрессные,
конкурентных методов	один из наиболее	экономически- и
анализа	экспрессных и простых в	эксплуатационно-выгодные
У2. Добавление в	эксплуатации методов,	методы могут сместить
рецептуру БАД	заменить его будет гораздо	флуориметрию, как основной
компонентов, влияющих	труднее	метод для анализа БАД
на матрицу объекта с	СУ2. Благодаря низким	
невозможной дальнейшей	затратам на пробоподготовку	СлУ2. При изменении
идентификацией состава	возможны различные	составов детских БАД с
У3. Повышение	варианты подготовки	введением в них компонентов,
стоимости оборудования	исследуемых объектов к	которые меняют и усложняют
	анализу	матрицу объекта,
	СУ3. Благодаря	селективность метода
	селективности и	флуориметрии значительно
	экспрессности метода	снизится
	флуориметрии, данный	СлУ3. В связи с повышением
	прибор, используемый при	затрат на калибровку
	исследовании, будет долго	оборудования и закупку
	служить будущему	нужных деталей для прибора
	поколению без	(кюветы, призмы и т.д.)
	дополнительных затрат на	возможна отмена
	оборудование	добровольного пользования
		флуориметром научно-
		исследовательским
		университетом

Вывод: В результате SWOT-анализа выявлено, что для данного проекта характерен баланс сильных и слабых сторон, а также возможностей и угроз. При правильно разработанной концепции продвижения проекта, можно внедрить используемый флуориметрический метод на рынок фармацевтической промышленности.

4.2. Планирование научно-исследовательских работ

4.2.1 Структура работ в рамках научного исследования

Для выполнения научно-исследовательской работы формируется рабочая группа, в состав которой входят: бакалавр — Лоскутова Л.Н., научный

руководитель — Вишенкова Д.А., консультант по экономической части (ЭЧ) - Рыжакина Т. Г. и консультант по части социальной ответственности (СО) — Винокурова Г.Ф. выпускной квалификационной работы. Необходимо составить перечень этапов и работ в рамках проведения научного исследования и провести распределение исполнителей по видам работ (таблица 4.2.1.1).

Таблица 4.2.1.1 – Перечень этапов, работ и распределение исполнителей

№ этап а	Название этапа	Содержаниеработ	Должность исполнителя
1	Введение	Разъяснение темы НИР, основных направлений деятельности по осуществлению НИР	Вишенкова Д.А. (ассистент ОХИ ИШПР)
2	Литературный обзор	Обзор существующих методик и теоретических основ методы исследования водорастворимых витаминов	Лоскутова Л.Н. (студент)
3	Теоретический анализ	Разработка плана НИР, выбор методики и техники выполнения	Вишенкова Д.А. (ассистент ОХИ ИШПР) Лоскутова Л.Н. (студент)
4	Постановка задачи исследования	Постановка задачи на эксперимент, предсказание возможных результатов	Вишенкова Д.А. (ассистент ОХИ ИШПР)
5	Экспериментальн ая часть	Исследование оптических свойств ряда водорастворимых витаминов группы В для разработки методики их последующего определения в детских БАД	Лоскутова Л.Н. (студент)

Продолжение таблицы 4.2.1.1

		Оценка эффективности	Вишенкова Д.А.
	Воруни доди и	полученных результатов и	(ассистент ОХИ
6	Результаты и	определение	ИШПР)
	обсуждения	целесообразности	Лоскутова Л.Н.
		проведения ВКР	(студент)
			Рыжакина Т. Г.
7		Оценка эффективности	(доцент ОСГН.)
/	Разработка	применения анализа	Лоскутова Л.Н.
	технической		(студент)
	документации и		Винокурова Д.Ф.
8	проектирование	Разработка социальной	(доцент ООД)
8		ответственности по теме	Лоскутова Л.Н.
			(студент)
	Оформление	Разработка презентации,	Лоскутова Л.Н.
9	отчета по НИР	дипломной работы и	лоскутова л.н. (студент)
	UINCIA IIU IIVIF	раздаточного материала	(стубент)

4.2.2 Определение трудоемкости выполнения работ

Трудоемкость выполнения научного исследования оценивается экспертным путем в человеко-днях и носит вероятностный характер, т.к. зависит от множества трудно учитываемых факторов.

Таблица 4.2.2.1 - Рабочая группа проекта

ФИО, основное	Роль в проекте	Функции	Трудозатраты,
место работы,			час.
должность			
Ассистент ОХИ	Руководитель	Контроль над	240
ИШПР	НИР	ходом выполнения	
Вишенкова Д.А.		проекта,	
		консультации по	
		поводу проведения	
		эксперимента,	
		получения и	
		анализа	
		результатов НИР	

Продолжение таблицы 4.2.2.1

Студент	Исполнитель	Выполнение проекта	480
Лоскутова Л.Н.		(проведение	
		эксперимента,	
		получение и анализ	
		результатов НИР)	
Доцент ОСГН	Консультант по	Оценка эффективности	10
Рыжакина Т. Г.	экономической	применения анализа	
	части		
Доцент ООД	Консультант по	Разработка социальной	10
Винокурова Г.Ф.	части социальной	ответственности по	
	ответственности	теме	
Итого:			740

Трудозатраты были рассчитаны на основании следующих данных: проект выполняется 4 месяца, руководитель проекта принимает участие 3 раза в неделю на протяжении 5-х часов, инженер дипломник работает в среднем 5 дней в неделю по 6 часов.

4.2.3. Разработка графика проведения научного исследования

Для удобства построения графика, длительность каждого из этапов работ из рабочих дней следует перевести в календарные дни. Для этого необходимо воспользоваться следующей формулой:

$$T_{\text{K}i} = T_{\text{p}i} \cdot k_{\text{KAJ}} \,, \tag{4.2}$$

где: $T_{\kappa i}$ — продолжительность выполнения i-й работы в календарных днях; $T_{\mathrm{p}i}$ — продолжительность выполненияi-й работы в рабочих днях; $k_{\mathrm{кал}}$ —коэффициент календарности.

Коэффициент календарности определяется по следующей формуле:

$$k_{\text{\tiny KAII}} = \frac{T_{\text{\tiny KAII}}}{T_{\text{\tiny KAII}} - T_{\text{\tiny BBIX}} - T_{\text{\tiny IDD}}} = \frac{365}{365 - 118 - 27} = \frac{365}{220} = 1.659 \tag{4.3}$$

где: $T_{\text{кал}}$ – количество календарных дней в году;

 $T_{\text{вых}}$ — количество выходных дней в году;

$T_{\rm np}$ — количество праздничных дней в году.

Календарный план проекта представлен в таблице 4.2.3.1.

Таблица 4.2.3.1 – Календарный план проекта

Название работы	Длительность,	Длительность,	Количество	Должность
	рабочие дни	календарные	исполнител	исполнителя
		дни	ей	
Введение	5	15	1	Вишенкова Д.А.
				(ассистент ОХИ
				ИШПР)
Литературный обзор	10	10	1	Лоскутова Л.Н.
				(студент)
Теоретический анализ	10	10	2	Вишенкова Д.А.
1				(ассистент ОХИ
				ИШПР)
				Лоскутова Л.Н.
				(студент)
Постановка задачи	5	8	1	Вишенкова Д.А.
исследования				(ассистент ОХИ
				ИШПР)
Экспериментальная	30	46	1	Лоскутова Л.Н.
часть				(студент)
Результаты и	10	15	2	Вишенкова Д.А.
обсуждения	10		_	(ассистент ОХИ
остуждения				ИШПР)
				Лоскутова Л.Н.
				(студент)
Оценка	5	9	2	Рыжакина Т. Г.
эффективности				(доцент ОСГН)
применения анализа				Лоскутова Л.Н.
				(студент)
Разработка	5	9	2	Винокурова Д.Ф.
социальной				(доцент ООД)
ответственности по				Лоскутова Л.Н.
теме				(студент)
Разработка	3	8	1	Лоскутова Л.Н.
презентации и				(студент)
раздаточного				
материала				
Оформление	10	23	1	Лоскутова Л.Н.
дипломной работы				(студент)
Итого:	93	153		
	_			

Диаграмма Ганта – горизонтальный ленточный график, на котором работы по теме представляются протяженными во времени отрезками, характеризующимися датами начала и окончания выполнения данных работ. Диаграмма Ганта для данного исследования представлена в таблице 4.2.3.2.

Таблица 4.2.3.2 – Календарный план-график проведения НИОКР по теме «Определение ряда водорастворимых витаминов группы В в составе детских БАД»

	ээдэржизэржизи.		Продолжительность выполнения работ								
Вид работы	Исполнители	T_{ki} ,		март			апрель			май	
Вид расоты		дней	1	2	3	1	2	3	1	2	3
Введение	Научный руководитель	5									
Литературный обзор	Бакалавр	10									
Теоретический анализ	Научный руководитель, бакалавр	10									
Постановка задачи иссделования	Научный руководитель	5									
Экспериментальная часть	Бакалавр	30					Ţ				
Результаты и обсуждения	Научный руководитель, бакалавр	10									
Оценки эффекитвности применения анализа	Консультант по ЭЧ, бакалавр	5									
Разработка социальной ответственности	Консультант по СО, бакалавр	5									
Разработка презентации и раздаточного материала	Бакалавр	3									
Оформление	Бакалавр	10									

Условные обозначения в таблице 4.2.3.2: Бакалавр, Руководитель, Консультант по ЭЧ, - Консультант по СО.

4.3. Бюджет научно-технического исследования (НТИ)

4.3.1. Расчет материальных затрат НТИ

Бюджет затрат на выполнение НТИ составляется с целью проведения данной работы. Затраты на НТИ рассчитываются по статьям калькуляции, которые включают две группы затрат прямые затраты и накладные затраты.

Расчет стоимости материальных затрат производился по действующим прейскурантам и ценам с учетом НДС. В стоимость материальных затрат включили транспортно-заготовительные расходы (3 – 5 % от цены). Результаты расчета затрат на сырье, материалы и покупные изделия в процессе проведения НИР представлены в таблице 4.2.3.3.

Таблица 4.2.3.3 – Материальные затраты

Наименование	Ед ·	Количество		Ц	Цена за ед., руб.			Затраты на материалы, (3_{M}) , руб.		
	ИЗ М.	Исп.1	Исп.2	Исп.3	Исп.1	Исп.2	Исп.3	Исп.1	Исп.2	Исп.3
Конц. соляная кислота (фикс.) ТУ 2642-001-33813273-97	ШТ	2	2	5	49,5	49,5	49,5	99	99	247,5
Натрий гидроокись ГОСТ 4328-77 изм. 1.2	КГ	0,05	0,05	0,1	199	199	199	9,95	9,95	19,9
Стандарт-титр (6 ампул) ТУ 2642-004- 33813273-2006	шт	2	3	5	619	619	619	206	309,5	515,8
Caxap	ΚΓ	0,1	0,1	0,2	60	60	60	6	6	12
Желатин	уп ак.	1	2	4	16	16	16	16	36	72
Тиамин	уп ак.	1	1	2	31	31	31	31	31	62
Никотиновая кислота	уп ак.	1	1	2	36	36	36	36	36	72
Пиридоксин	уп ак.	1	1	2	43	43	43	43	43	86
Цианокобалами н	уп ак.	2	2	4	26	26	26	52	52	104
Пиковит	уп ак.	1	1	1	137	137	137	137	137	137
Компливит	уп ак.	1	1	1	305	305	305	305	305	305

Продолжение таблицы 4.2.3.3

Юнивит Кидс	уп ак.	1	1	1	416	416	416	416	416	416
Колбы мерные на 10, 50 и 100 см ³	ШТ	6	8	20	120	120	120	720	960	2400
Цилиндр мерный с носиком на 50 см ³	ШТ	3	3	6	70	70	70	210	210	420
Итого:								2287	2631	4869

4.3.2 Расчет затрат на оборудование для научноэкспериментальных работ

В данную статью включены все затраты, связанные с приобретением оборудования (приборов, специального контрольно-измерительной аппаратуры, устройств и механизмов), необходимого для проведения работ по данной теме. Определение стоимости спецоборудования производили по прейскурантам НДС. действующим c учетом При приобретении спецоборудования учтены затраты по его доставке и монтажу в размере 15 % его цены. Все расчеты по приобретению спецоборудования оборудования, используемого для каждого исполнения темы, сводятся в таблице 4.3.2.1.

Таблица 4.3.2.1 – Затраты на оборудование для научно-экспериментальных работ

№, п/п	Наименование оборудования	Количество единиц оборудования, шт	Цена единицы оборудования, руб.	Общая стоимость оборудования, руб.		
1	Дистиллятор для приготовления воды очищенной (Россия, Тюмень)	1	20000	20000		
2	Весы аналитические (класс точности 0,0001 г., Россия)	1	19000	19000		
3	Дозатор 1-канальный, переменного объема 10-1000 мкл (Россия);	1	6828	6828		
	Итого:					

Стоимость оборудования, используемого при выполнении НИР имеющегося на кафедре ФАХ стоимостью свыше 40 тыс. рублей, учитывалось в виде амортизационных отчислений. Расчет затрат по статье «Амортизация оборудования» представлена в таблице 4.3.2.2.

Таблица 4.3.2.2 - Расчет затрат по статье «Амортизация оборудования»

Наименование оборудования	Цена	Эксплуатация	Амортизация,
	оборудования,	оборудования,	руб.
	руб.	количество лет	
Спектрофотометр (Япония)	870000	5	174000
Флуориметр (Венгрия)	504000	5	100800
Ит	274800		

4.3.3 Расчет основной заработной платы

Основная заработная плата $(3_{\text{осн}})$ руководителя (инженера) от предприятия (при наличии руководителя от предприятия) рассчитывается по следующей формуле:

$$3_{\text{осн}} = 3_{\text{лн}} \cdot T_{pab}, \tag{4.4}$$

где: $3_{\text{осн}}$ — основная заработная плата одного работника; T_p — продолжительность работ, выполняемых научно-техническим работником, раб. дн. ; $3_{\text{лн}}$ — среднедневная заработная плата работника, руб.

Среднедневная заработная плата рассчитывается по формуле:

$$3_{\text{\tiny ZH}} = \frac{3_{\text{\tiny M}} \cdot M}{F_{\text{\tiny T}}}, \tag{4.5}$$

где: 3_м – месячный должностной оклад работника, руб.;

M — количество месяцев работы без отпуска в течение года: при отпуске в 24 раб. дня M =11,2 месяца, 5-дневная неделя; при отпуске в 48 раб. дней M=10,4 месяца, 6-дневная неделя;

 F_{π} — действительный годовой фонд рабочего времени научно-технического персонала, раб. дн.

Таблица 4.3.3.1 – Баланс рабочего времени за 2018 год

Показатели рабочего времени	Руководитель	Бакалавр
Календарное число дней	365	365
Количество нерабочих дней		
- выходные дни	118	118
- праздничные дни		
Потери рабочего времени		
- отпуск	24	-
- невыходы по болезни		
Действительный годовой фонд рабочего времени	223	247

Месячный должностной оклад работника:

$$3_{_{\rm M}} = 3_{_{\rm TC}} \cdot (1 + k_{_{\rm IIP}} + k_{_{\rm J}}) \cdot k_{_{\rm P}}, \tag{4.6}$$

где: 3_{тс} – заработная плата по тарифной ставке, руб.;

 $k_{\text{пр}}-$ премиальный коэффициент, равный 0,3 (т.е. 30% от $3_{\text{тс}}$);

 $k_{\mbox{\tiny {\rm J}}}-$ коэффициент доплат и надбавок составляет примерно 0,2 - 0,5

 ${\rm k}_{\rm p}$ – районный коэффициент, равный 1,3 (для Томска).

Расчет основной заработной платы приведен в таблице 4.3.3.2.

Таблица 4.3.3.2 – Расчет основной заработной платы

Категория	3 _{тс} , руб.	k_{∂}	k_p	3 _м ,руб	3 _{∂н} , руб.	T_{p} ,раб. дн.	3 _{осн} , руб.		
	Руководитель								
ППС3	28000	0,35	1,3	60060	6108	11,7	71464		
	Бакалавр								
ППС1	2200	0,35	1,3	4719	480	7,6	3648		
]	Консульт	гант по ЭЧ					
ППС3	22450	0,35	1,3	48155	4897	4,1	20078		
Консультант по СО									
ППС3	33240	0,35	1,3	71300	7251	4,4	31904		

Общая заработная плата исполнителей работы представлена в таблице 4.3.3.3.

Таблица 4.3.3.3 — Общая заработная плата исполнителей

Исполнители	3 _{осн} , руб.	З _{доп} , руб.	3₃п, руб.
Научный руководитель	71464	10005	81469
Бакалавр	3648	510,7	4158,7
Консультант по ЭЧ	20078	2811	22889
Консультант СО	31904	4466,6	36370,6

4.3.4 Отчисления во внебюджетные фонды (страховые отчисления)

Отчисления на социальные нужды составляет 30% от суммы заработной платы всех сотрудников. Отчисления на социальные нужды составляет: отчисления в пенсионный фонд 22%, отчисление на социальное страхование 2,9%, отчисление на медицинское страхование 5,1%.0,5% страхование жизни, от несчастного случая.

Рассчитываем затраты на отчисление на социальные нужды по формуле:

$$3_{o.c.h.} = 0.3 \cdot (3_{och.pvk.} + 3_{och.uh.c.}),$$
 (4.7)

где: $3_{\text{о.с.н}}$ – затраты на отчисления на социальные нужды, руб.

$$3_{o.c.h.} = 0,3 \cdot (71464 + 3648 + 20078 + 31904) = 38128,2.$$

Отчисления во внебюджетные фонды представлены в таблице 4.3.4.1.

Таблица 4.3.4.1 – Отчисления во внебюджетные фонды

Исполнители	Основная заработная	Дополнительная		
	плата, руб.	заработная плата, руб.		
Научный руководитель	71464	10005		
Бакалавр	3648	510,7		
Консультант по ЭЧ	20078	2811		
Консультант СО	31904	4466,6		
Коэффициент				
отчислений во	0	,3		
внебюджетные фонды				
ИТОГО:	38128,2			

4.3.5 Накладные расходы

Накладные расходы учитывают прочие затраты организации, не попавшие в предыдущие статьи расходов: печать и ксерокопирование графических материалов, оплата услуг связи, электроэнергии, транспортные расходы и т.д. Их величина определяется по следующей формуле:

$$3_{\text{накл}} = k_{\text{нр}} \cdot (\text{сумма статей } 1 \div 5), (4.8)$$

где: $k_{\text{нр}}$ – коэффициент, учитывающий накладные расходы.

Величину коэффициента накладных расходов k_{np} допускается взять в размере 16%.

4.3.6 Формирование бюджета затрат НТИ

Рассчитанная величина затрат научно-исследовательской работы является основой для формирования бюджета затрат проекта, который при формировании договора с заказчиком защищается научной организацией в качестве нижнего предела затрат на разработку научно-технической продукции.

Определение бюджета затрат на научно-исследовательский проект приведен в таблице 4.3.6.1.

Таблица 4.3.6.1 – Расчет бюджета затрат НТИ

Наименование статьи	(Примечание		
Паименование статьи	Исп.1	Исп.2	Исп.3	
1. Материальные затраты НТИ	2287	2631	4869	Табл.12
2. Затраты на специальное оборудование для научных (экспериментальных) работ	45828	45828	395828	Табл.13
3. Затраты по основной заработной плате исполнителей темы	127094	127094	127094	Табл.16
4. Затраты по дополнительной заработной плате исполнителей темы	17793,3	17793,3	17793,3	Табл.17
5. Отчисления во внебюджетные фонды	38128,2	38128,2	38128,2	Табл.18
6. Накладные расходы	37082,55	47849,1	93495,68	16 % от суммы ст.1-5
7. Бюджет затрат НТИ	268213,0	346270,5	677208,1	Сумма ст. 1-6

4.4. Определение ресурсной (ресурсосберегающей), финансовой, бюджетной, социальной и экономической эффективности исследования

Определение эффективности происходит на основе расчета интегрального показателя эффективности научного исследования. Его нахождение связано с определением двух средневзвешенных величин: финансовой эффективности и ресурсоэффективности.

Интегральный финансовый показатель разработки определяется как:

$$I_{\text{финр}}^{ucn.i} = \frac{\Phi_{\text{p}i}}{\Phi_{\text{max}}},\tag{4.9}$$

где: $I_{\phi \text{инр}}^{\text{исп.i}}$ — интегральный финансовый показатель разработки;

 Φ_{pi} – стоимость і-го варианта исполнения;

 Φ_{max} — максимальная стоимость исполнения научно-исследовательского проекта (в т.ч. аналоги).

Полученная величина интегрального финансового показателя разработки отражает соответствующее численное увеличение бюджета затрат разработки в разах (значение больше единицы), либо соответствующее численное удешевление стоимости разработки в разах (значение меньше единицы, но больше нуля).

Интегральный показатель ресурсоэффективности вариантов исполнения объекта исследования можно определить следующим образом:

$$I_{pi} = \sum a_i \cdot b_i, \qquad (4.10)$$

где: I_{pi} — интегральный показатель ресурсоэффективности для і-го варианта исполнения разработки; a_i — весовой коэффициент і-го варианта исполнения разработки; b_i^a,b_i^p — бальная оценка і-го варианта исполнения разработки, устанавливается экспертным путем по выбранной шкале оценивания; n — число параметров сравнения. Результаты по расчету интегрального показателя ресурсоэффективности представлены в таблице 4.4.1.

Таблица 4.4.1 – Сравнительная оценка характеристик вариантов исполнения проекта

Объект исследования	Весовой коэффициент	Исп.1	Исп.2	Исп. 3
Критерии	параметра			
1. Экспрессность	0,15	5	4	3
2. Простота эксплуатации	0,15	5	4	3
3.Предполагаемый срок	0,20	5	4	4
эксплуатации				
4.Цена	0,25	5	5	3
5. Точность определения	0,25	5	3	5
ИТОГО:	1	4,8	4	3,9

$$\begin{split} &I_{\text{рисп.}1} = 5 \cdot 0,15 + 5 \cdot 0,15 + 4 \cdot 0,20 + 5 \cdot 0,25 + 5 \cdot 0,25 = 4,8; \\ &I_{\text{рисп.}2} = 4 \cdot 0,15 + 4 \cdot 0,15 + 4 \cdot 0,20 + 5 \cdot 0,25 + 3 \cdot 0,25 = 4; \\ &I_{\text{рисп.}3} = 3 \cdot 0,15 + 3 \cdot 0,15 + 5 \cdot 0,20 + 3 \cdot 0,25 + 5 \cdot 0,25 = 3,9. \end{split}$$

Интегральный показатель эффективности разработки $(I^p_{\phi u \mu p})$ и аналога $(I^a_{\phi u \mu p})$ определяется на основании интегрального показателя ресурсоэффективности и интегрального финансового показателя по формуле:

$$I_{ucn.1} = \frac{I_{p-ucn1}}{I_{\phi u u p}^{ucn.1}}, \qquad I_{ucn.2} = \frac{I_{p-ucn2}}{I_{\phi u u p}^{ucn.2}}...$$
 (4.11)

Сравнение интегрального показателя эффективности текущего проекта и аналогов позволит определить сравнительную эффективность проекта. Сравнительная эффективность проекта:

$$\mathcal{G}_{cp} = \frac{I_{ucn.1}}{I_{ucn.2}} \tag{4.12}$$

где \mathfrak{I}_{cp}^p — сравнительная эффективность проекта; I^p_{m9} — интегральный показатель разработки; I^a_{m9} — интегральный технико-экономический показатель аналога.

Сравнение значений интегральных показателей эффективности позволяет понять и выбрать более эффективный вариант решения поставленной в бакалаврской работе технической задачи с позиции финансовой и ресурсной эффективности. Наглядно данное сравнение представлено в таблице 4.4.2.

Таблица 4.4.2 – Сравнительная эффективность разработки

№ п/п	Показатели	Исп.1	Исп.2	Исп. 3
1	Интегральный финансовый показатель	0,65	0,94	1
2	Интегральный показатель ресурсоэффективности	4,85	4	4,25
3	Интегральный показатель эффективности	<u>7,5</u>	4,25	4,25
4	Сравнительная эффективность вариантов исполнения	1,76	0,57	0,57

При оценке сравнительной эффективности методов определения можно сделать вывод, что настоящий проект, использующий в качестве инструмента хронокондуктометрическое определение, является более ресурсоэффективным, чем конкурентные методики: манометрический методи поляриметрический метод.

Список публикаций по НИР

- 1. Лоскутова Л. Н. Определение витаминного состава детских БАД / Лоскутова Л. Н., Булычева Е.В. // XIX Международная научно-практическая конференция имени профессора Л. П. Кулёва студентов и молодых ученых «Химия и химическая технология в XXI веке»: сборник тезисов докладов, 21-24 мая 2018 г., г. Томск / Томский политехнический университет. Томск: Изд-во Томского политехнического университета, 2018. 609 с.
- 2. Лоскутова Л. Н. Определение витамина С в детских БАД / Лоскутова Л. Н., Булычева Е.В. // Байкальская школа-конференция по химии: сборник научных трудов ІІ всероссийской школы-конференции, посвященной 100-летию Иркутского государственного университета и 85-летию химического факультета ИГУ БШКХ-2018, 24-28 сентября 2018 г. / ФГБОУ ВО «ИГУ» Иркутск: Изд-во «Оттиск», 2018. 158 с.
- 3. Лоскутова Л. Н. Определение ряда водорастворимых витаминов группы В в детских БАД / Лоскутова Л. Н., Вишенкова Д.А. // ХХ Международная научно-практическая конференция имени профессора Л. П. Кулёва студентов и молодых ученых «Химия и химическая технология в ХХІ веке»: сборник тезисов докладов, 20-23 мая 2019 г., г. Томск / Томский политехнический университет. Томск: Изд-во Томского политехнического университета, 2019. 634 с.