Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки/профиль 09.06.01 Информатика и вычислительная техника Инженерная школа информационных технологий и робототехники Отделение информационных технологий

Научный доклад об основных результатах подготовленной научно-квалификационной работы

Тема научного доклада
Метод семантической сегментации изображений в режиме реального времени
VЛК 004 032 2/72:004 031 43

УДК 004.932.2/.72:004.031.43

Аспирант

	Группа	ФИО	Подпись	Дата
A	15-39	Григорьев Дмитрий Сергеевич		

Руководителя профиля подготовки

JROBOZIII CIM II PODINIM II OZI OTOBRII				
Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Профессор ОИТ ИШИТР	Спицын Владимир	д.т.н.,		
	Григорьевич	профессор		

Руководитель отделения

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Исполняющий	Шерстнев Владислав	к.т.н., доцент		
обязанности	Станиславович			
руководителя ОИТ				
ИШИТР				

Научный руковолитель

паучный руководитель				
Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Профессор ОИТ ИШИТР	Спицын Владимир	Д.Т.Н.,		
	Григорьевич	профессор		

АННОТАЦИЯ К НАУЧНО-КВАЛИФИКАЦИОННОЙ РАБОТЕ

«Метод семантической сегментации изображений в режиме реального времени»

Автор: Григорьев Дмитрий Сергеевич, аспирант гр. А5-39 ОИТ ТПУ Научный руководитель: Спицын Владимир Григорьевич, профессор ОИТ ТПУ

Научно-квалификационная работа посвящена разработке метода, алгоритмического и программного обеспечения для семантической сегментации изображений способного работать в ограниченных рамках технических характеристик встраиваемых вычислительных устройств в условиях реального времени с приемлемой точностью.

Теоретическая значимость работы

Разработанный нейросетевой метод семантической сегментации может быть применим в различных областях машинного зрения. Это обусловлено способностью сверточной нейронной сети (СНС) формировать признаковое описание целевого объекта на основе его представления в обучающей выборке. Представленный метод обладает на порядок меньшим набором вычисляемых параметров по сравнению с аналогами.

Практическая значимость работы

На основе численных экспериментов на различных наборах данных продемонстрирована способность разработанной архитектуры глубокой СНС обеспечивать производительность в режиме реального времени при минимальном наборе вычисляемых параметров. Программное обеспечение реализующее предложенный метод не требует высокопроизводительного оборудования и может использоваться во встраиваемых системах.

Апробация работы

Результаты исследований были представлены на следующих конференциях:

XVI Международная научно-практическая конференция студентов, аспирантов и молодых учёных «Молодежь и современные информационные технологии» (Томск, 2018), XIII Всероссийская научно-практическая конференции студентов, аспирантов и молодых учёных «Технологии Microsoft в теории и практике программирования» (Томск, 2016), XIX международная научно-практическая конференция студентов, аспирантов и молодых ученых «Современные техника и технологии» (Томск, 2011–2013).

Реализация результатов исследования

При помощи разработанного метода реализовано программное обеспечение и имплементировано в коммерческом продукте в ООО «Экстент5».

Результаты исследования были использованы в проекте «Создание комплексных технологий распознавания объектов на изображениях на основе применения моделей зрительного восприятия и методов вычислительного интеллекта», поддержанного грантом РФФИ № 12-08-00296a (2012—2014 гг.), а также в проекте «Создание интеллектуальной системы детектирования,

распознавания и понимания искаженных печатных текстов на изображениях и видео» поддержанного грантом РФФИ № 18-08-00977а (2018–2020 гг.).

Отдельные результаты исследования использовались в проекте ВИУ 118 ИК.2014.

Публикации

Материалы исследования представлены в 11 работах, из которых 4 статьи опубликованы в журналах, входящих в Перечень рецензируемых изданий, рекомендованных ВАК РФ.

Содержание научно-квалификационной работы

Во введении приведено обоснование актуальности исследования, сформулированы цели и задачи исследования. Приводится краткий обзор структуры и содержания работы.

В первой главе представлен аналитический обзор существующих методов и алгоритмов семантической сегментации изображений. Основываясь на проведенном анализе формулируется вывод о целесообразности использования нейросетевого подхода на основании глубоких СНС.

Во второй главе предложена архитектура СНС для алгоритма семантической сегментации изображений, содержащая минимально возможное число вычисляемых параметров. Производится подбор параметров архитектуры сети и численные эксперименты на различных наборах данных. Приводится общая оценка качества разработанного алгоритма.

В тремьей главе приводится описание предложенного способа повышения точности сегментации изображений на основе совместного применения аппарата дискретного вейвлет-преобразования и разработанного нейросетевого алгоритма. Обосновывается выбор параметров и уровня вейвлет-преобразования. Производится сравнение представленного алгоритма с современными аналогами.

В заключении приведены основные выводы и результаты научноквалификационной работы.

Научно-квалификационная работа состоит из введения, трех глав, заключения, списка использованных источников из 150 наименований и двух приложений.