Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки/профиль – 01.04.20 – Физика пучков заряженных частиц и ускорительная техника

Инженерная школа информационных технологий и робототехники

Отделение информационных технологий

Научный доклад об основных результатах подготовленной научно-квалификационной работы

Тема научного доклада

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТРАНСПОРТИРОВКИ ИОННЫХ ПУЧКОВ И ИХ ВОЗДЕЙСТВИЯ НА МЕТАЛЛИЧЕСКИЕ МИШЕНИ

УДК - 539.188:621.384.664

Аспирант

Группа	ФИО	Подпись	Дата
A5-15	Чан Ми Ким Ан		

Руководителя профиля подготовки

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Отв. за профиль	Кожевников А.В.	к.фм.н.		

Руководитель отделения

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Исполняющий обязанности руководителя ОИТ	Шерстнев В.С.	Доцент		

Научный руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Профессор ОИТ	Коваль Т. В.	д.фм.н.		

АННОТАЦИЯ К НАУЧНОМУ ДОКЛАДУ ПО РЕЗУЛЬТАТАМ НАУЧНО-КВАЛИФИКАЦИОННОЙ РАБОТЫ

«МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТРАНСПОРТИРОВКИ ИОННЫХ ПУЧКОВ И ИХ ВОЗДЕЙСТВИЯ НА МЕТАЛЛИЧЕСКИЕ МИШЕНИ»

Автор: Чан Ми Ким Ан, аспирант гр. А5-15 ОИТ ТПУ Научный руководитель: Коваль Т.В., профессор ОИТ ТПУ

В научном докладе обоснована актуальность тематики научной работы, которая определяется решением приоритетных задач по управлению формированием интенсивных ионных пучков и их воздействием на материалы с целью модификация поверхностных слоев материалов и изделий.

Определены цель и задачи исследований, сформулированы новизна полученных результатов и их научные положения.

Представлены результаты численного исследования (методом крупных частиц) основных закономерностей формирования и транспортировки высокоинтенсивного (с током до 1 А и плотностью тока до 500 мА/см²) низкоэнергетического (1-3 кэВ) ионного пучка в системе с баллистической фокусировкой; подтверждены результаты эксперимента по формированию высокоинтенсивных ионных пучков, определена область параметров устойчивой транспортировки ионного пучка; показано, что параметры системы и пучка определяют условия компенсации пространственного заряда быстрых ионов и формирования виртуального анода.

Построена диффузионная модель многофазного твердого тела с учетом распыления поверхности ионами пучка, позволяющая прогнозировать формирование ионномодифицированных слоев железа и низкоуглеродистой стали. С применением математической модели, описывающей взаимосвязанный рост нитридных слоев, получено, что конкуренция скоростей распыления поверхности и радиационно-стимулированной диффузии при воздействии на сталь 40X импульсно-периодического пучка ионов азота (с энергией ионов 1.2 кэВ при плотности ионного тока j = 50...500 мА/см²) определяет профили распределения примеси азота по глубине, максимальную глубину и формирование приповерхностного γ '-слоя, ответственного за эффект упрочнения поверхности.

Проведено численное исследование динамики температурных полей мишени (алюминий, титан и алюминий с титановым покрытием) в импульсе высокоскоростного воздействия (50...200 мкс) электронного пучка (8...20 Дж/см²). Показано, что в источнике с плазменным катодом СОЛО при вычислении температуры следует учитывать динамику радиального распределения плотности мощности электронного пучка на мишени, процессы, связанные с эрозией поверхности за счет взаимодействия интенсивного электронного пучка с расплавленным алюминием (при плотности энергии пучка E > 15 Дж/см²) и соответствие расчетной и экспериментальной плотности энергии электронного пучка на мишени.

Выводы, представленные в конце доклада, позволяют считать, что научная работа выполнена на достаточно высоком уровне с использованием современных численных методов, рассмотренные эффекты представляют интерес при разработке технологии модификации поверхностей материалов и изделий концентрированными потоками энергии.