Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки/профиль <u>01.04.16 - Физика атомного ядра и элементарных частиц</u> Школа Исследовательская школа физики высокоэнергетических процессов

Научный доклад об основных результатах подготовленной научно-квалификационной работы

чно-квалификационнои работы	
Тема научного доклада	

Численное моделирование квантовых резонансных эффектов, возникающих при взаимодействии заряженных релятивистских частиц с кристаллом.

УДК 539.2:539.121:530.145.6:519.876

Аспирант

Группа	ФИО	Подпись	Дата
A5-12	Эйхорн Юрий Леонидович		

Руководитель профиля подготовки

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
профессор	Трясучев Владимир Андреевич	д.фм.н., профессор		

Научный руководитель

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
профессор	Коротченко	д.фм.н.,		
	Константин Борисович	профессор		

Цель работы - теоретическое исследование квантовых явлений, возникающих при взаимодействии релятивистских электронов и позитронов с кристаллом в условиях, соответствующих условиям каналирования, и описание сопутствующих резонансных явлений.

Для достижения этой цели была построена модель численного расчета возникающих при малоугловом отражении электронов и позитронов с энергией 255 МэВ от поверхности кристалла кремния резонансных изменений параметров пучка. В задаче рассматривается кристалл, поверхность которого совпадает с одной из его кристаллографических плоскостей. Для описания потенциала кристаллографических плоскостей выбран модифицированный потенциал Пешля-Теллера. Показано, что коэффициенты отражения (и, соответственно, прохождения) электронов/позитронов от поверхности такого кристалла резонансно изменяются с изменением энергии частиц и их угла падения на поверхность.

В рамках квантовой классической теорий проведен расчет пространственной динамики пучка позитронов cэнергией 255 МэВ, каналированных вдоль плоскости (220) кристалла кремния. Численными расчетами продемонстрировано резонансное изменение пространственного распределения частиц в кристалле. С учетом данного явления рассчитана динамика выхода электроядерных реакций по глубине кристалла кремния от электронов с энергией 255 МэВ, каналированных вдоль плоскостей (220) кристалла. Численными расчетами подтверждено, что график выхода электроядерной реакции по глубине кристалла осциллирует.

В рамках КЭД (в представлении Фарри) построена теоретическая модель расчета излучения (в первом порядке теории возмущений), возникающего при малоугловом отражении релятивистских электронов от поверхности кристалла кремния. Показано, что в этих условиях могут возникать два новых типа излучения, которые ранее не изучались: излучение электронов, отраженных поверхностью и электронов, прошедших через нее.

В результате проделанной работы построено несколько теоретических моделей описания взаимодействия релятивистских электронов и позитронов с кристаллом в условиях, соответствующих условиям каналирования. Эти модели позволяют планировать экспериментальные исследования резонансного характера рассмотренных параметров пучка при таком взаимодействии. Причем исследования можно проводить на основе измерений параметров как самого пучка, так и косвенно – регистрацией продуктов электроядерной реакции или нового типа излучения.