УДК 621. 315. 592

ВОЛЬТАМПЕРНАЯ ХАРАКТЕРИСТИКА InGaTe₂

Годжаев Эльдар Мехрали оглы,

д-р физ.-мат. наук, профессор, Заслуженный деятель науки Азербайджанской Республики, заведующий кафедрой физики и НИЛ «Физика и техника наноструктур» Азербайджанского технического университета, Азербайджанская Республика, АЗ-1000, г. Баку, пр. Г. Джавида, 25. E-mail: geldar-04@mail.ru

Улькар Абдурахманова Сардар кызы,

докторант, старший лаборант НИЛ «Физика и техника наноструктур» Азербайджанского технического университета, Азербайджанская Республика, АЗ-1000, г. Баку, пр. Г. Джавида, 25. E-mail: uulker12@mail.ru

Кулиева Самира Оруджкулу кызы,

канд.т физ.-мат. наук, ассистент кафедры «Электроника» Азербайджанского технического университета, Азербайджанская Республика, A3-1000, г. Баку, пр. Г. Джавида, 25. E-mail: S.quliyeva@mail.ru

Цель работы: Получение и исследование вольтамперной характеристики монокристаллов и тонких пленок соединения InGaTe, в статическом и динамическом режимах, при различных температурах и при различных площадях контактов.

Методы исследования. Монокристаллы $InGaTe_2$ были выращены методами Бриджмена—Стокбаргера, а тонкие пленки получены с использованием метода конденсации из паровой фазы. Рентгенограммы $InGaTe_2$ получены на дифрактометре ДРОН-2 в CuK_α излучении (λ =1,54178Å). Параметры элементарной ячейки определили с точностью 0,005Å. Вольт-амперная характеристика исследована на образцах прямоугольной формы размерами $7 \times 1 \times 1$ мм³. Контактами служили In и Cu. Ток, снабжающий концы прямоугольных образцов, ориентирован так, что ток через образец протекает вдоль по оси \vec{c} монокристалла $InGaTe_2$. Вольт-амперная характеристика исследовалась на постоянном токе в статическом и динамическом режимах.

Результаты: Рентгенофазовым анализом выявлено, что соединение InGaTe₂ кристаллизуется в тетрагональной сингонии с параметрами решетки a=8,463Å; c=6,981Å. Исследовались статическая и динамическая вольт-амперные характеристики InGaTe₂ при различных температурах, изменение температуры образцов в области отрицательного дифференциального сопротивления, зависимость порогового напряжения от температуры, вольт-амперная характеристика тонких пленок InGaTe₂ при различных площадях контактов. Выявлено, что данная фаза обладает переключающими свойствами с памятью и с уменьшением температуры величина порогового напряжения увеличивается, в результате S-образная характеристика становится ярко выраженной. Проанализировано изменение порогового напряжения с изменением температуры. Исследовались ВАХ тонких пленок в зависимости от площади и от размера самой пленки. Выявлено, что пленки также обладают переключающими свойствами и с уменьшением площади контактов величина порогового напряжения, при котором происходит переключение, уменьшается. А также изменением температуры и площади контактов управляется величина порогового напряжения. А это означает, что данная фаза может успешно применяться при создании быстродействующих и высокочувствительных приборов.

Ключевые слова:

Переключения, рентгенофазовый анализ, тонкие пленки, S-образная характеристика, пороговое напряжение, цепочечная структура, соединения InGaTe₂.

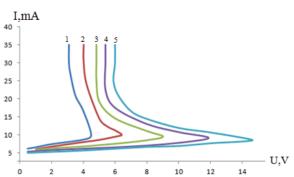
Введение

Соединения типа $A^{\text{III}}B^{\text{VI}}$ до сих пор не потеряли свою актуальность благодаря своим уникальным физическим свойствам и практическим применениям. Соединения вышеуказанного типа и их тройные аналоги $A^{\text{III}}B^{\text{III}}C_2^{\text{VI}}$ относятся к группе цепочечно-слоистых кристаллов [1-3]. Эти соединения занимают особое место среди соединений с кристаллической структурой с высокой анизотропией. В литературе известны многочисленные работы, посвященные структурным, физико-химическим, электрофизическим, фотоэлектрическим и другим свойствам тройных соединений типа A^{III}B^{III}C₂^{VI} [1-5]. В частности, наряду с исследованиями физических свойств, были вычислены зонные структуры, оптические функции, определены эффективные массы электронов и дырок, исследованиями вольтамперных характеристик соединения типа $A^{\text{III}}B^{\text{III}}C_2^{\text{VI}}$ выявлено, что эти соединения обладают переключающими свойствами с памятью [5]. В литературе имеются многочисленные работы, посвященные исследованию вольтамперной характеристики (ВАХ) полупроводниковых соединений и твердых растворов, а также поиску новых материалов с более качественными физическими параметрами [6, 7]. В этих работах исследовались особенности ВАХ планарных образцов и тонких пленок, влияние периферии контактов на свойства материала, эффект резистивного переключения и т. д. В работах [8-11] рассмотрены особенности ВАХ в стеклообразных халькогенидах, а в работах [12-17] подробно и убедительно доказано, что эффект переключения, выявленный в кристаллических и аморфных полупроводниках, с уверенностью можно объяснить на основе электронно-теплового механизма [18–23]. Однако свойства, в том числе и ВАХ, соединения $InGaTe_2$ изучены недостаточно. В связи с этим целью данной работы является исследование вольтамперной характеристики соединения $InGaTe_2$.

Методика эксперимента

Для синтеза InGaTe, использовали элементы со следующей чистотой: In - особо чистый, Ga 99,996 и Те - 99,990 %. Ампулы очищались смесью HF с дистиллированной водой. После химической очистки вакуумированную до 0,01333 Па ампулу помещали в печь при 1000 °C на 24 ч, после чего охлаждали до комнатной температуры, наполняли исходными элементами. Для гомогенизации сплава смесь выдерживалась 24 часа при температуре 970 °C. Во время процесса синтеза ампулы часто встряхивали с целью лучшего смешивания составных частей. Далее ампула с веществом со скоростью 1,33 мм/ч перемещалась из высокотемпературной зоны в зону кристаллизации с соответствующей температурой 700°С. После охлаждения до комнатной температуры полученные кристаллы подвергались рентгенофазовому анализу. Рентгенограммы соединения InGaTe₂ снимали на рентгеновском дифрактометре ДРОН-2 в CuK, излучении (λ =1,54178Å). Параметры элементарной ячейки определили с точностью 0,005 Å.

Вольтамперная характеристика была исследована на образцах прямоугольной формы размерами 7×1×1мм³. Контактами служили In и Cu. Контакты были проверены четырехточечным методом, последовательным измерением сопротивления на образцах. Ток, снабжающий концы прямоугольных образцов ориентирован так, что ток через образец протекает вдоль оси \vec{c} монокристалла. BAX InGaTe₂ исследовались и на тонких пленках. Тонкие пленки получены путем конденсации из паровой фазы, поскольку этот способ обеспечивает относительно простые условия технологического процесса и достаточно хорошую воспроизводимость физических параметров. ВАХ исследовались на постоянном токе по стандартной методике, описанной в работе [2].


Экспериментальные результаты

Расшифровкой рентгенограммы было выявлено, что $InGaTe_2$, так же как и его тройные аналоги с цепочечной структурой, кристаллизуется в тетрагональной сингонии с параметрами решетки $a=8,463\text{\AA}$; $c=6,981\text{\AA}$, с числом формульных единиц в элементарной ячейке z=4 и пространственной группой \dot{I} 4/mcm. Результаты индицирования рентгенограммы приводятся в таблице.

Результаты исследования вольтамперной характеристики при статическом режиме приводятся на рис. 1-4. На рис. 1 приводится BAX InGaTe₂ при статическом режиме при различных температурах.

Таблица. *Pesyльтаты рентгенофазового анализа InGaTe*₂ **Table.** *Results of X-ray diffraction analysis of InGaTe*₅

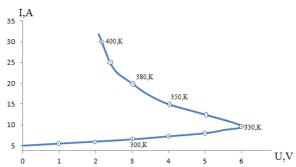

θ	d _{pacч} , Å	d₃ĸc, Å	hkl	I _{oth.}
10°31′	4,2300	4,2217	200	6
13°42′	3,2600	3,2554	211	100
22°26′	2,9911	2,020	220	14
23°1′	1,9685	1,9661	411	33
23°22′	1,9439	1,9442	332(402)	29

Рис. 1. Вольтамперные характеристики InGaTe₂ при различных температурах, где 1 −350; 2 − 300; 3 − 250; 4 − 200; 5 − 80 K

Fig. 1. Current-voltage characteristic of InGaTe₂ at different temperatures, where 1 is 350; 2 is 300; 3 is 250; 4 is 200; 5 is 80 K

Вольтамперная характеристика InGaTe₂ измерялась при различных окружающих температурах, в интервале температур 80–350 К (рис. 1). Как видно, при низких напряжениях I(U) зависимость является линейной и контакт является омическим.

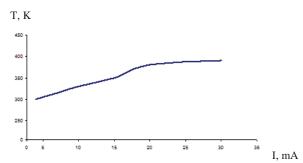
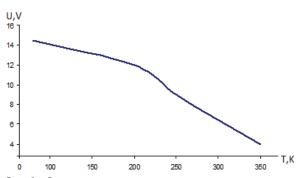


Рис. 2. Вольтамперная характеристика InGaTe₂ (на графике показаны изменения температуры образца в области отрицательного дифференциального сопротивления)

Fig. 2. Current-voltage characteristic of InGaTe₂ (the diagram demonstrates changes in the sample temperature in the region of negative differential resistance)


С увеличением напряжения I(U) характеристика затухала и была строго нелинейной и S-образной формы. Выявлено, что в омической области температура образца остается постоянной, а в области отрицательного дифференциального сопротивления увеличивается до температуры T, обычно больше, чем окружающая температура. S-образная характеристика в области высоких токов с лучшей выраженной областью отрицательного сопротивления становится впоследствии критическим током (пороговый ток). Часть отрицательного дифференциального сопротивления на кривой прибора сильнее выражена при низких окружающих температурах. Как видно из кривой, переход от низких к высоким электропроводностям при низких температурах скачкообразный. В области отрицательного дифференциального сопротивления I(U) кривой мы измеряли температуру образца в каждой точке, посредством термоэлемента, прикладываемого к образцу. Для этой цели была использована теплопроводящая и электрически изоляционная паста. Результаты показаны на рис. 2. Эксперимент показал, что температура образцов была выше, чем окружающая температура.

На рис. З изображена зависимость температуры образца от протекающего через образец тока.

Рис. 3. Зависимость температуры InGaTe₂ от протекающего через образец тока

Fig. 3. Dependence of InGaTe₂ temperature on current flowing through the sample

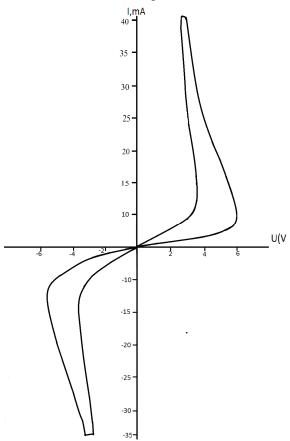


Рис. 4. Зависимость порогового напряжения от температуры для $InGaTe_2$

Fig. 4. Dependence of InGaTe₂ threshold voltage on temperature for InGaTe₂

На рис. 4 показана зависимость порогового напряжения от температуры образца. Анализ полученных результатов показывает, что область, контролируемая током, корректирована с увеличением температуры образца. Согласно полученным (рис. 1) данным, происходит миграция порогового напряжения к высоким значениям с уменьшением окружающей температуры и слабое проявление области отрицательного дифференциального сопротивления на вольт-амперной характеристике

вследствие увеличения окружающей температуры. Эти факты доказывают, что электротепловые процессы ответственны в появлении области отрицательного дифференциального сопротивления [13]. В электротепловых процессах допускаются малые локальные отклонения от однородного распределения несовершенств, приводящих к высоким токовым плотностям в этих областях. Такое повышение токовой плотности обычно сопровождается формированием высоко-токовой плотности ниже накала в образцах. В «каналах» повышенная токовая плотность, т. е. увеличение энергии рассеяния, приводит к Джоулеву теплу. Так как температура увеличивается, то электропроводность тоже увеличивается и даёт возможность протеканию тока.

Рис. 5. Вольтамперная характеристика пленки InGaTe₂ с толщиной 50 мкм в динамическом режиме

Fig. 5. Current-voltage characteristic of InGaTe₂ film with thickness of 50 μm in dynamic mode

Устойчивое состояние этого поведения будет тогда, когда тепловое рассеяние будет равно тепловым потерям.

Таким образом, представленные выше экспериментальные результаты по исследованию BAX InGaTe₂ могут быть описаны электронно-тепловым процессом. Мы допускаем в первом приближении, что нить накала занимает весь образец. Эта модель [24] была предложена в случае соединений $TIInX_2(X-Se, Te)$ и получила удовлетворительные результаты [25].

Полученные нами результаты (рис. 1, 2, 5) по исследованию BAX InGaTe₂ выявили, что при малых значениях напряжений сила тока изменяется линейно и начиная с определенного значения напряжения образец скачкообразно переходит из высокоомного состояния в низкоомное, т. е. BAX этих фаз является S-образной, на характеристиках имеются области отрицательного дифференциального сопротивления (рис. 1). С уменьшением рабочей температуры увеличивается величина порогового напряжения, т. е. при температуре 350 К напряжение порогового переключения соответствует 4,5 В; при 300 К – 6,4 В; при 250 К – 9 В; при 200 К – 11,9 В; при 80 К –14,6 В.

Мы попытаемся, используя имеющиеся к настоящему времени модели, объяснить сущность эффекта переключения в соединении InGaTe₂. Участок ОС на ВАХ диода на основе InGaTe, может образоваться только при наличии внутренней положительной обратной связи. Для диода с S-образной вольтамперной характеристикой образуется положительная обратная связь по току. Это означает, что любое изменение тока должно вызывать дальнейшее его изменение в том же направлении. Анализируем условия возникновения отрицательного дифференциального сопротивления в InGaTe₂ с p-n переходом. Такой диод можно представить в виде последовательно включенного электронно-дырочного перехода и сопротивления высокоомной базовой области образцов.

В этом случае приложенное к диоду на основе соединения ${\rm InGaTe_2}$ напряжение U состоит из падения напряжения на p-n переходе $U_{\rm 0}$ и на толще базы $U_{\rm T}$:

$$U=U_0+U_{\mathrm{T}},\tag{1}$$

причем

$$U_{\rm T} = IR_{\rm T} = \frac{I}{\sigma_{\rm T}}; \ U_{\rm 0} = \left(\frac{\beta kT}{q}\right) \ln\left(\frac{I}{I_{\rm 0}} + 1\right);$$

где I_0 — предэкспоненциальный множитель; β — коэффициент, принимающий значения между 1 и 2 в зависимости от параметров p-n перехода и протекающего тока; $R_{\rm T}$ и $\sigma_{\rm T}$ — сопротивление и проводимость толщи базы диода: $\sigma_{\rm T} = \sigma_0 + \sigma^*$ (σ_0 — проводимость базы в отсутствие инжекции, σ^* — добавочная проводимость, обусловленная инжекцией и возрастающая при увеличении тока через образец).

В случае, когда материал однороден и не содержит центров захвата, концентрация инжектированных носителей тока растет линейно с увеличением тока через р-п переход. При наличии ловушек или неоднородностей проводимость в базовой области с изменением протекающего тока будет изменяться не по линейному, а по более сложному закону, который можно выразить в виде

$$\sigma_T = \sigma_0 \left[1 + \left(\frac{I}{I_1} \right)^{\gamma} \right],$$

где I_1 — постоянная величина, выраженная через электрофизические параметры материала базы.

В этом случае выражение (1) примет вид:

$$U = \frac{Id}{\sigma_0 \left[1 + \left(\frac{I}{I_1} \right)^{\gamma} \right]} + \frac{\beta kT}{q} \ln \left(\frac{I}{I_0} + 1 \right).$$
 (2)

Дифференцированием уравнение (2) находим дифференциальное сопротивление прямой ветви рассматриваемого диода:

$$\frac{dU}{dI} = \frac{1 + \left(\frac{I}{I_1}\right)^{\gamma} (1 - \gamma)}{\sigma_0 \left[1 + \left(\frac{I}{I_1}\right)^{\gamma}\right]^2} d + \frac{\beta kT}{q(I + I_0)}.$$

При переходе от положительного дифференциального сопротивления к отрицательному $\frac{dU}{dI}=0$. Поэтому условие существования отрицательного сопротивления может быть записано в виде:

$$1 + \left(\frac{I}{I_1}\right)^{\gamma} (1 - \gamma) + \frac{\beta kT}{qd} \frac{\sigma_0[(1 + I/I_0)^{\gamma}]}{I + I_0} = 0.$$

Это условие может выполняться только при $\gamma>1$. При линейной и более слабой зависимости проводимости базы от тока через p-n переход, т. е. при $\gamma\le 1$, участок ОС на BAX отсутствует. Таким образом, из приведенного примера видно, что изменение проводимости базы только за счет инжекции не приводит к появлению участка ОС на BAX диода. Должна существовать еще одна причина изменения проводимости.

При малых напряжениях сопротивление базы велико и почти все приложенное напряжение падает на диоде. С ростом напряжения концентрация инжектированных носителей в базе увеличивается, и ее сопротивление падает. Однако при $\gamma \leq 1$ $R_{\rm T}$ уменьшается не быстрее, чем сопротивление p-n перехода. Поэтому с ростом тока полное напряжение растет. Ток является монотонной функцией приложенного напряжения. Если же $\gamma > 1$, то проводимость толщи возрастает быстрее, чем проводимость р-п перехода. Это приводит к уменьшению доли падения напряжения на базе, что приводит к усилению и новому перераспределению напряжения между базой и р-п переходом. Это и есть положительная обратная связь, необходимая для появления отрицательного сопротивления. Таким образом, в InGaTe₂ обязательным условием возникновения отрицательного сопротивления является существование дополнительного, сопровождающего инжекцию механизма возрастания проводимости базовой области. Для понимания природы отрицательного сопротивления необходимо рассмотреть именно эти, дополнительные к инжекции, физические явления.

Вольтамперная характеристика с длинной базой (d>>L) и при коэффициенте инжекции p-n перехода равном единице может быть приближенно представлена следующим выражением [26]:

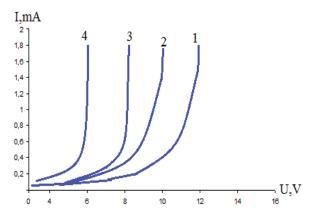
$$I = \frac{kTch(d/L)}{2q\rho_0 L(b+1)} (e^{qU/ckT} - 1),$$

где L – длина диффузионного смещения при высоких уровнях инжекции; ρ_0 – удельное сопротивление; b – отношение подвижностей электронов и дырок; d – толщина базовой области:

$$C=2(b+chd/L)/(b+1)$$
.

Константа c экспоненциально возрастает с ростом отношения d/L. Поэтому полный ток очень сильно зависит от этого отношения. Если с ростом уровня время жизни увеличивается, то это приводит к резкому возрастанию тока. Концентрация носителей тока на базе лавинно возрастает. Инжектирование p-n переходом неосновных носителей повышает их время жизни в объеме. По этой причине происходит дальнейшее снижение сопротивления базы, что приводит к перераспределению напряжения между базой и р-п переходом. Доля напряжения на р-п переходе увеличивается. В результате происходит дополнительная инжекция носителей тока, дальнейшее увеличение времени жизни и т. д. Такой процесс и приводит к появлению ОС на ВАХ соединения InGaTe₂.

Следует отметить, что для исследования ВАХ тонких пленок с различными геометрическими размерами необходимо было получить образцы, в которых формовка является незначительной либо не происходит вообще, в противном случае смысл геометрических размеров образцов, определенных как площадь сечения и расстояния между контактами, теряется. В пленках InGaTe₂ при высоких напряжениях наблюдается экспоненциальный рост тока с напряжением. Обычно первоначальное возрастание тока связывают с эмиссией, обусловленной эффектом Шотки из контактов


$I=Bexp(\beta V^{1/2}).$

ВАХ тонкой пленки InGaTe₂, снятая в динамическом режиме, приводится на рис. 5. Из рис. 5, следует, что в широком интервале напряжений наблюдается область отрицательного дифференциального сопротивления. Характеристика является S-образной, а InGaTe₂ обладает переключающими свойствами с памятью. Исследовались зависимости тока от напряжения для пленок InGaTe₂ одинакового размера с разной площадью контактов (рис. 6). Как следует из рис. 6, пороговый ток и величина порогового падения напряжения на образце заметным образом уменьшаются с ростом площади контакта.

Это удовлетворительно согласуется с моделью [13], так как с уменьшением площади контакта однородность образца возрастает. Таким образом, локальное развитие S-образной характеристики в неоднородности может повышать среднюю проводимость образца, приводить к формированию статических шнуров и уменьшению перепада напряжения при переключении.

Важной особенностью BAX в пленках $InGaTe_2$ является то, что шнур, возникающий при переключении также статический, хотя в отдельных случаях

наблюдались не релаксационные колебания напряжения в состоянии со шнуром. Такой шнур, по видимому, аналогичен захваченному на диоде домену сильного электрического поля в диоде Ганна. При достаточно большой неоднородности S-образный участок ВАХ вырождается, то есть статический шнур со своим параметром приближается к стабильному.

Рис. 6. Вольтамперная характеристика тонких пленок InGaTe₂ при различных площадях контактов, где 1 − 2·10⁻⁵; 2 − 2·10⁻⁴; 3 − 3·10⁺; 4 − 3·10⁻⁴ cм²

Fig. 6. Current-voltage characteristic of InGaTe₂ thin films at different contact areas, where 1 = 2·10⁻⁵; 2 = 2·10⁻⁴; 3 = 3·10¹; 4 = 3·10⁻⁴ cm²

Исследовались влияния размеров контактов на ВАХ тонких пленок InGaTe₂ (рис. 6). Выявлено, что с уменьшением площади контактов пороговое напряжение уменьшается. Исследование проводились и на пленочных образцах различного размера. С увеличением диаметра контакта или сечения в образцах малой длины наблюдается лишь уменьшение порогового поля. В образцах большой длины пороговый ток сильно уменьшается.

Для пороговых переключателей при любой длине образца пороговое поле не зависит от площади контакта. Таким образом, наиболее универсальное явление в изученных образцах — это отсутствие радиальных неоднородностей тока в широком интервале длины. В более длиных образцах, изготовленных из материалов с памятью, появляется радиальная неоднородность. До пороговой области радиальная неоднородность возникает лишь в непосредственной близости к точке срыва.

Перечислим основные особенности влияния размеров на вид BAX InGaTe $_2$:

- уменьшение поперечных размеров образца изменяет как до-, так и после-пороговую части ВАХ;
- при увеличении продольных размеров образцов размерные эффекты в до-пороговой части ВАХ сохраняются, а в после-пороговой исчезают;
- размерные эффекты не могут быть обусловлены реактивностью образца, так как уменьшение площади контакта и увеличение продольных размеров уменьшают собственную ёмкость образца, но в соответствии с предыдущим пунктом имеют противоположное влияние на виды ВАХ в свойствах образца;

 пролётные эффекты играют существенную роль в формировании шнуров только в том случае, когда увеличение длины образца влечёт за собой увеличение пролётного времени носителей или снижает величину тока получения стабильного шнура.

В заключении следует отметить, что тройное соединение InGaTe₂, обладающее переключающими свойствами с памятью, и его S-образная BAX могут успешно применяться в создании новых чувствительных переключателей.

Заключение

Исследования вольтамперной характеристики тройного соединения $InGaTe_2$ в статическом и динамическом режимах показало, что это соединение обладает переключающими свойствами с памятью.

СПИСОК ЛИТЕРАТУРА

- 1. Waser R. Redox-based resistive switching memories // J. Nanosci. Nanotechnol. 2012. № 12 (10). P. 7628–7640.
- Cluster-like resistive switching of SrTiO₃: Nb surface layers /
 C. Rodenbücher, W. Speier, G. Bihlmayer, U. Breuer, R. Waser,
 K. Szot // New J. Phys. 2013. № 15. 103017.
 DOI:10.1088/1367-2630/15/10/103017.
- Расчет зонной структуры и оптических функций тройных соединений InGaSe₂, InGaTe₂ / Э.М. Годжаев, П.Ф. Алиева, Р.С. Рагимов, У.С. Абдурахманова, А.А. Исмаилов // Фундаментальные и прикладные проблемы науки: Матер. VIII Междунар. симпозиума. М., 2013. Т. I. С. 59–67.
- Тоджаев Э.М. Суперионная проводимость в кристаллах // Физика и техника полупроводников. – 2011. – Т. 45. – Вып. 8. – С. 1009–1013.
- Эффект переключения на тонких пленках TlInSe₂ / Э.М. Годжаев, К.Д. Гюльмамедов, Х.С. Халилова, С.О. Гулиева // Электронная обработка материалов. 2011. Т. 47. № 5. С. 18–22.
- Моделирование вольтамперных характеристик фотогальванического элемента на основе оксида никеля / Д.К. Параничев, П.А. Болдин, Н.А. Кулдин, А.А. Величко, В.В. Путролайнен // Вестник ВГТУ. 2011. Т. 7. № 9. С. 99–101.
- 7. Горхов Н.А Влияние фото-эдс на прохождение тока в контактах металл— полупроводник с барьером Шоттки // ФТП. 2011.-T.45.- № 7.-C.965-973.
- 8. Цуканов Д.А., Рыжкова М.В., Борисенко Б.А. Влияние стехиометрического состава поверхностной фазы Si, Au, Ag на электрическую проводимость подложки // ФТП. 2013. Т. 47. № 6. С. 765–771.
- 9. Горхов Н.А., Новиков В.А. Влияние периферии контактов металл-полупроводник с барьером Шоттки на их электрофизические характеристики // ФТП. 2011. Т. 45. № 1. С. 70-81.
- Строение и электронные свойства халькогенидных стеклообразных полупроводников / Г.А. Бордовский, В.А. Бордовский, А.В. Марченко, П.П. Серегин // в кн.: Физические свойства неупорядоченных полупроводников. СПб.: Изд-во РГПУ им. А.И. Герцена, 2011. 240 с.
- 11. The Growth of Single Crystals of InGaSe₂ Compounds, their X-Ray-Phase Analysis, Electronic Structure and Optical Functions / E.M. Godzhayev, Z.A. Jahangirli, P. Alieva, Kh. Khalilova, T. Musaev // Journal of Inorganic non-metallic Materials. 2013. № 3. P. 1–5.

Экспериментальные вольтамперные характеристики кристаллических образцов InGaTe₂ являются линейными при низких и нелинейными при высоких токовых плотностях. Нелинейный режим (ОДС-области) имеет S-образную форму.

Устойчивое состояние ВАХ и особенности их ОДС области можно интерпретировать электронно-тепловым механизмом.

Выявлено, что увеличение нагревания внутренней части образца приводит к повышенной концентрации свободных носителей в этой области из-за полупроводникового характера $InGaTe_2$ и уменьшению величины порогового напряжения. С уменьшением площади контактов и геометрического размера пленок величина порогового напряжения уменьшается, а с изменением окружающей температуры, размеров омических контактов и самих образцов из $InGaTe_2$ можно получить переключатели с требуемыми физическими параметрами.

- Годжаев Э.М., Джафарова Г.С., Сафарова С.И. Зонная структура ТПпТе₂ и термоэффективность твердых растворов на его основе // Термоэлектричество. 2013. № 1. С. 28–33.
- 13. Богословский Н.А. Электронно-тепловая модель эффекта переключения и памяти, основанная на многофононной туннельной ионизации U-центров в халькогенидных полупроводниках: автореф. дис. ... канд. физ.-мат. наук. СПб., 2013. 22 с.
- 14. Богословский Н.А., Ценден К.Д. Физика эффектов переключения памяти в халькогенидных стеклообразных полупроводниках // ФТП. 2012. Т. 46. № 5. С. 577–608.
- 15. Lencer D., Salinga M., Wuttig M. Design Rules for Phase-change Materials in Data Storage Application // Adv. Mater. 2011. T. 23. N 18. C. 2030–2058.
- 16. Примесные центры олова в стеклообразных халькогенидах германия / Г.А. Бордовский, П.В. Гладких, М.Ю. Кожокарь, А.В. Марченко, П.П. Серегин, Е.И. Теруков // Физика и техника полупроводников. 2011. Т. 45. № 10. С. 1399–1404.
- 17. Кастро Р.А., Грабко Г.И. Исследование диэлектрических процессов в аморфных пленках (As_2Se_3) іхBix // Физика и техника полупроводников. 2011. T. 45. N 6. C. 622–624.
- 18. Использование перехода металл-полупроводник в тонкопленочных слоях SmS для создания переключающих устройств / П.А. Тетерик, А.В. Зенкевич, А.А. Чуприк, А.С. Батурин // Труды 54 науч. конф. МФТИ. М., 2011. С. 58-59.
- 19. Switching and memory effects in partly crystallized amorphous $Ge_2Sb_2Te_5$ films in a current controlled mode / N. Almasov, N. Bogoslovskiy, N. Korobova et al. // Journal of Non-Crystalline Solids. 2012. V. 358. P. 3299–3303.
- Котова М.С., Дронов М.А., Белогорохов И.А. Эффект резистивного переключения в полимерных материалах, содержащих металлические микрочастицы и энергонезависимая память на его основе // Ученные записки физического факультета МГУ. 2012. V. 2. С. 125501–1–122501–5.
- Особенности вольт-амперных характеристик в тонких пленках состава Ge₂Sb₂Te₅ при использовании измерительной цепи с источником тока / С.А. Фефелов, Л.П. Казакова, С.А. Козюхин, К.Д. Цэндин, Д. Арсова, В. Памукчиева // Тех. Физ. 2014. Т. 84. № 3. С. 80–84.
- 22. Tsendin K.D. Physics of Switching and Memory Effects in Chalcogenides // Universal Journal of Physics and Application. 2014. T. 2. № 2. C. 53–59. DOI: 10.13189/ujpa.2014.020201
- Эффект памяти формы и сверхэластичность сплавов никелида титана, имплантированных высокими дозами ионов / А.Д. По-

- гребняк, С.Н. Братушка, В.М. Береснев, N. Levintant-Zayonts // Успехи химии. 2013. Т. 82. № 12. С. 1135–1159.
- 24. I-U dependence of TlInX₂ (X=Se, Te) single crystals: the Ohmic and S-type regions / M. Hanias, A.N. Anagnostopoulos, K. Kambas, J. Spyridelis // Physical Rewiew B. − 1991. − V. 43. − № 5. − P. 4135–4140.
- Effect of resistive switching and electrically driven insulatorconductor transition in PbZrO₃ single crystals / I. Jankowska-Su-
- mara, K. Szot, A. Majchrowski, K. Roleder // PSS. 2013. V. 210. Iss. 3. P. 507–512. DOI: 10.1002/pssa.201228586.
- Маилов А.А. Переключающие приборы на основе аморфных полупроводниковых материалов // Электронная техника. Сер. У1 Микроэлектроника. – 1971. – Вып. 3. – С. 3–13.

Поступила 13.03.2014 г.

UDC 621. 315. 592

CURRENT-VOLTAGE CHARACTERISTIC OF InGaTe₂

Eldar Mehrali ogly Godzhayev,

Azerbaijan Technical University, 25, prospect Dzhavida, Baku, AZ-1000, Republic of Azerbaijan. E-mail: geldar-04@mail.ru

Ulkar Sardar gyzy Abdurahmanova,

Azerbaijan Technical University, 25, prospect Dzhavida, Baku, AZ-1000, Republic of Azerbaijan. E-mail: uulker12@mail.ru

Samira Orudjgulu gyzy Gulieva,

Azerbaijan Technical University, 25, prospect Dzhavida, Baku, AZ-1000, Republic of Azerbaijan. E-mail: S.quliyeva@mail.ru

The main aim of the research is to prepare and study the current-voltage characteristics of single crystals and thin films of InGaTe₂ compound in static and dynamic modes at different temperatures and for different contact area.

Methods. InGaTe₂ single crystals were grown by the Bridgman-Stockbarger methods, and thin films were prepared by the method of physical vapor deposition. InGaTe₂ radiographs were obtained on a DRON-2 CuK_{α} radiation (λ =1,54178Å). The unit cell parameters were determined with the accuracy 0,005Å. The current-voltage characteristics was investigated on rectangular samples with dimensions $7 \times 1 \times 1$ mm³. In and Cu served as contacts. Current supplying the ends of rectangular samples is oriented in the way that current flows through the sample along a single crystal axis \vec{c} of InGaTe₂ monocrystal. The current-voltage characteristics were examined for constant current in static and dynamic modes.

Results. X-ray analysis revealed that $InGaTe_2$ compound crystallizes in tetragonal syngony with lattice parameters a=8,463Å; a=6,981Å. The authors have investigated the static and dynamic current-voltage characteristics of $InGaTe_4$ at different temperatures, change in the samples temperature in the region of negative differential resistance, dependence of the threshold voltage on the temperature, current-voltage characteristics of $InGaTe_2$ thin films at different contact area. It was ascertained that this phase has switching properties with memory. The threshold voltage increases at temperature decreas. The S-pattern becomes clearly expressed. The authors analyzed the change in the threshold voltage at temperature change. The CVC of thin films were investigated depending on the area and the size of the film itself. It was revealed that the films also exhibit switching properties and decreasing contact area with the magnitude of the threshold voltage at which the switching is reduced. The threshold voltage value is controlled by the changes in temperature and contact area. This means that this phase can be successfully used in the design of fast and highly sensitive instrumentation.

Kev words

Switching, X-ray analysis, thin films, S-shaped characteristic, threshold voltage, chain structure, InGaTe, compounds.

REFERENCES

- 1. Waser R. Redox-based resistive switching memories. *J Nanosci Nanotechnol.*, 2012, vol. 12, no. 10, pp. 7628–7640.
- 2. Rodenbücher C., Speier W., Bihlmayer G., Breuer U., Waser R., Szot K. Cluster-like resistive switching of $SrTiO_3$: Nb surface layers. New J. Phys., 2013, no. 15, 103017. DOI:10.1088/1367-2630/15/10/103017.
- Godzhaev E.M., Alieva P.F., Ragimov R.S., Abdurakhmanova U.S., Ismailov A.A. Raschet zonnoy struktury i opticheskikh funktsiy trynykh soedineny InGaSe₂, InGaTe₂ [Calculation of the band structure and optical functions of ternary compounds InGaSe₂, InGaTe₂]. Fundamentalnye i prikladnye problemy nauki. Mezhdunarodny simpozium [Proc. of the VIII International Sym-
- posium. Fundamental and Applied Problems of science. Moscow, 2013. Vol. I, pp. 59-67.
- Godzhaev E.M. Superionnaya provodimost v kristallakh TlGaTe₂ [Superionic conduction in TlGaTe₂ crystals]. Semiconductor Physics and Technology Physics, 2011, vol. 45, no. 8, pp. 1009-1013.
- Godzhaev E.M., Gulmammadov K.D., Khalilov Kh.S., Gulieva S.O. Effekt pereklyucheniya na tonkikh plenkakh TlInSe₂ [Switching effect in thin films TlInSe₂]. Electronic Materials Processing, 2011, vol. 47, no. 5, pp. 18-22.
- Paranichev D.K., Boldin P.A., Kuldin N.A., Velichko A.A., Putrolaynen V.V. Modelirovanie voltampernykh kharakteristik fotogalvanicheskogo elementa na osnove oksida nikelya [Modeling

- current-voltage characteristics of the photovoltaic cell on the basis of nickel oxide]. *VSTU Bulletin*, 2011, vol. 7, no. 9, pp. 99-101.
- Gorkhov N.A. Vliyanie foto-eds na prokhozhdenie toka v kontaktalh metal-poluprovodnik s baryierom Shottki [Effect photo-emf on current flow in the metal-semiconductor contacts with Schottky barrier]. FTP, 2011, vol. 45, no. 7, pp. 965–973.
- 8. Tsukanov D.A., Ryzhkova M.V., Borisenko B.A. Vliyanie stekhiometricheskogo sostava poverkhnostnoy fazy of Si, Au, Ag na elektricheskuyu provodimost podlozhki [Effect of stoichiometric composition of Si, Au, Ag surface phase on substrate electrical conductivity]. FTP, 2013, vol. 47, no. 6, pp. 765-771.
- Gorkhov N.A., Novikov V.A. Vliyanie periferii kontaktov metal-poluprovodnik s baryerom Shottki na ikh elektrofizicheskie kharakteristiki [Effect of peripheral of metal-semiconductor contact with Schottky barrier on their electrical characteristics]. FTP, 2011, vol. 45, no. 1, pp. 70-81
- Bordovskiy G.A., Bordovskiy V.A., Marchenko A.V., Seregin P.P. Stroenie i elektronnye svoystva khalkogenidnykh stekloobraznykh poluprovodnikov [Structure and electronic properties of chalcogenide semiconductors]. Fizicheskie svoystva neuporyadochennykh poluprovodnikov [Physical properties of disordered semiconductors]. St. Petersburg, A.I. Gertsen RGPU Press, 2011. 240 p.
- Godzhayev E.M., Jahangirli Z.A., Alieva P., Khalilova Kh., Musaev T. The Growth of Single Crystals of InGaSe2 Compounds, Their X-Ray-Phase Analysis, Electronic Structure and Optical Functions. *Journal of Inorganic Non-metallic Materials*, 2013, no. 3, pp. 1–5.
- 12. Gozhayev E.M., Dzhafarova G.S., Safarova S.I. Zonnaya struktura TlInTe₂ i termoeffektivnost tverdykh rastvorov na ego osnove [Band structure and thermal efficiency of TlInTe₂ and solid solutions based on TlInTe₂]. Termoelektrichestvo, 2013, no. 1, pp. 28–33.
- 13. Bogoslovskiy N.A. Elektronno-teplovaya model effekta perekly-ucheniya i pamyati, osnovannaya na mnogofononnoy tunnelnoy ionizatsii U-tsentrov v khalkogenidnykh poluprovodnikakh. Avtoreferat Dis. Kand. nauk [Electron thermal model of switching and memory effect, based on multiphonon tunnel ionization of U-centers in chalcogenide semiconductors. Cand. Diss. Abstract]. St. Petersburg, 2013. 22 p.
- Bogoslovskiy N.A., Tsenden K.D. Fizika effektov pereklyucheniya pamyati v khalkogenidnykh stekloobraznykh poluprovodnikakh [Physics of memory switching in chalcogenide glassy semiconductors]. FTP, 2012, vol. 46, no. 5, pp. 577-608.
- Lencer D., Salinga M., Wuttig M. Design Rules for Phase-change Materials in Data Storage Application. Adv. Mater., 2011, vol. 23, no. 18, pp. 2030–2034.
- Bordovskiy G.A., Gladkikh P.V., Kozhokar M.Yu., Marchenko A.V., Seregin P.P., Terukov E.I. Primesnye tsentry olova v stekloobraznykh khalkogenidakh germaniya [Impurity tin centers in germanium glassy chalcogenides]. FTP, 2011, vol. 45, no. 10, pp. 1399-1404.

- Kastro P.A., Grabko G.I. Issledovanie dielektricheskikh protsessov v amorfnykh plenkakh (As2Se3) ixBix [Study of dielectric processes in amorphous films (As2Se3) ixBix]. FTP, 2011, vol. 45, no. 5, pp. 622–624.
- 18. Teterik P.A., Zenkevich A.V., Chuprikov A.A., Baturin A.S. Ispolzovanie perekhoda metal-poluprovodnik v tonkoplenochnykh sloyakh SmS dlya sozdaniya pereklyuchayushchikh ustroystv [Using a metal-semiconductor transition in SmS thin layers to create switching devices]. Trudy 54 nauchnoy konferentsii MFTI [Proc. 54 MIPT scientific conferencef]. Moscow, 2011. pp. 58-59.
- Almasov N., Bogoslovskiy N., Korobova N. Switching and memory effects in partly crystallized amorphous Ge₂Sb₂Te₅ films in a current controlled mode. *Journal of Non-Crystalline Solids*, 2012, vol. 358, pp. 3299–3303.
- 20. Kotova M.S., Dronov M.A., Belogorokhov I.A. Effekt rezistivnogo pereklyucheniya v polimernykh materialakh, soderzhashchikh metallicheskie mikrochastitsy i energozavisimaya pamyat na ego osnove [Resistive switching effect in polymeric materials containing metal microparticles and non-volatile memory based on it]. Uchenye zapiski fizicheskogo fakulteta MGU Scientists note of the MSU Physics Department, 2012, vol. 2, pp. 125501-1-122501-5.
- 21. Fefelov S.A., Kazakov L.P., Kozyukhin S.A., Tsendin K.D., Arsova D., Pamukchieva V. Osobennosti volt-ampernykh kharakteristik v tonkikh plenkakh sostava Ge₂Sb₂Te₅ pri ispolzovanii izmeritelnoy tsepi s istochnikom toka [Features of the current-voltage characteristics of thin films of Ge₂Sb₂Te₅ using measuring circuit with a current source]. Tekhnicheskaya fizika, 2014, vol. 84, no. 3, pp. 80-84.
- Tsendin K.D. Physics of Switching and Memory Effects in Chalcogenides. Universal Journal of Physics and Application, 2014, vol. 2, no. 2, pp. 53-59. DOI: 10.13189/ujpa.2014.020201.
- 23. Pogrebnyak A.D., Bratushka S.N., Beresnev V.M., Levintant-Zayonts N. Effekt pamyati formy i sverkhelastichnost splavov nikelida titana, implantirovannykh vysokimi dozami ionov [The shape memory effect and superelasticity NiTi alloy implanted with high doses of ions]. Russian Chemical Reviews, 2013, vol. 82, no. 12, pp. 1135–1159.
- 24. Hanias M., Anagnostopoulos A.N., Kambas K., Spyridelis J. I-U dependence of TlInX₂ (X=Se, Te) single crystals: The Ohmic and S-type regions. *Physical RewiewB*, 1991, vol. 43, no. 5, pp. 4135–4140.
- Jankowska-Sumara I., Szot K., Majchrowski A., Roleder K. Effect of resistive switching and electrically driven insulator-conductor transition in PbZrO₃ single crystals. PSS, 2013, vol. 210, Iss. 3, pp. 507–512. DOI: 10.1002/pssa.201228586.
- Mailov A.A. Pereklyuchayushchie pribory na osnove amorfnykh poluprovodnikovykh materialov [Switching devices based on amorphous semiconductor materials]. *Electronic Technology. Ser.* U1 Microelectronics, 1971, no. 3, pp. 3–13.

Received: 13 March 2014.