Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки/профиль: $\underline{03.06.01}$ Физика и астрономия/ $\underline{01.04.07}$ Физика конденсированного состояния

Школа: Инженерная школа физики высокоэнергетических процессов

Научный доклад об основных результатах подготовленной научно-квалификационной работы

Тема научного доклада			
Нанесение катодного слоя твердооксидного топливного элемента методом магнетронного			
распыления			

УДК 621.793.7:537.525

Аспирант

Группа	ФИО	Подпись	Дата
A5-08	Смолянский Егор Александрович		

Руководитель профиля подготовки

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Профессор-консультант	Чернов Иван Петрович	Д.фм.н.,		
ШТRN ФЄО		профессор		

Директор школы

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Директор ИШФВП	Сухих Леонид	Д.фм.н.		
	Григорьевич			

Научный руководитель

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Заведующий	Ремнев Геннадий	Д.т.н.,		
лабораторией НПЛ	Ефимович	профессор		
ТПЄПИ	_			

Аннотация

Актуальность темы. Интерес к разработке твердооксидных топливных элементов (ТОТЭ) как одного из наиболее перспективных типов источников энергии постоянно растет. Актуальным направлением развития в этой области является исследование многослойных тонкопленочных структур для ТОТЭ. Обычно ТОТЭ работают при высоких температурах (выше 800°C). Несомненным преимуществом ТОТЭ с тонкопленочным электролитом является способность работать в так называемом интервале промежуточных температур 600-800 °C. Это приводит к снижению скорости процессов разложения, увеличению выбора материалов для компонентов ТОТЭ, таких как биполярные пластины и уплотнительные способных материалы, выдерживать многочисленные термо-И окислительно-Однако, уменьшением восстановительные циклы. c температуры увеличиваются поляризационные потери в топливной ячейке, в большей степени на границе электролит/катод. Чтобы повысить эффективность ТОТЭ, необходимо увеличить скорость реакции восстановления кислорода. Использование материалов со смешанной ионноэлектронной проводимостью с более быстрой диффузией кислорода и улучшенной кинетикой поверхности, а также создание тонких наноструктуриронванных промежуточных слоев катода помогает решить эту проблему.

Целью данной диссертационной работы является поиск оптимального режима формирования методом магнетронного распыления катодного слоя твердооксидного топливного элемента для получения повышенной плотности мощности в среднетемпературном (600-800 °C) режиме работы.

Задачи:

- 1. Определить оптимальный режим импульсного магнетронного осаждения кобальтита лантана стронция $La_{0.6}Sr_{0.4}CoO_3$ (LSC) на морфологию поверхности, структуру и фазовый состав получаемого катодного слоя.
 - 2. Определить эффективную толщину катодного слоя
- 3. Сформировать и провести испытания единичных ячейки твердооксидного топливного элемента с промежуточным катодным слоями.
- 4. Определить взаимосвязь между параметрами осаждения, структурой формируемых покрытий с электрохимическими характеристиками ячеек ТОТЭ

Заключение

В результате проведенной работы были сформированы методом магнетронного распыления и исследованы тонкие пленки катодов ТОТЭ. Была определена оптимальная толщина катода (около 800нм), при которой увеличилась плотность мощности, снимаемой с ячейки в 1.5-2 раза при температурах 600-800 °C.