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Abstract. Monolithic Al2O3 ceramics and Al2O3 – 3 vol% single-walled carbon nanotubes 

(SWCNTs) composites were prepared by spark plasma sintering. The influence of SWCNTs 

and sintering temperature on sintering behavior and mechanical properties were investigated. 

Nanotubes were relatively homogeneously distributed in the composite powder, although some 

agglomerates/bundles existed. It was found that SWCNTs addition retards slightly the 

sinterability of alumina by nanotubes hindering of particle rearrangement. The average 

microhardness of the composites was lower than that of Al2O3 ceramics, but there were also 

high microhardness values of composites (20.41 GPa). The reduction in microhardness is 

explained in this paper. The average values of the fracture toughness (4.94 MPa·m1/2) from the 

composite sintered at 1500 °C were approximately 6 % and 12 % higher than those from the 

Al2O3 ceramics sintered at 1500 °C and 1600 °C, respectively. In addition, the analysis of the 

phase composition and the parameters of the crystal structure of the samples were made. 

1.  Introduction 

Alumina (Al2O3) ceramics possess wide technological applications in modern industry because of their 

excellent properties such as high hardness, optimal high temperature property retention, acceptable 

dielectric properties, chemical inertness, corrosion resistance, adsorption properties and 

biocompatibility. Brittleness, low fracture toughness and flexural strength of alumina ceramics largely 

limits their application scope [1]. Many strategies have been proposed to tackle this problem and 

adding reinforcing materials as a second phase in the form of particles, platelets or whiskers/fibers is a 

useful method [2, 3]. The improvement in toughness with fiber reinforcement, especially in a 

continuous form, is much greater than that with particulate reinforcement [4]. Reinforcement of the 

Al2O3 matrix can be performed different fibrous fillers such as: alumina nanofibers/whiskers [5-8], 

mullite whiskers [9, 10], SiC whiskers [11, 12], carbon nanofibers [13, 14], carbon nanotubes [15-18], 

boron nitride nanotubes [19, 20]. Most of investigations have been focused especially on the 

mechanical characteristics of carbon nanotubes (CNTs) since CNTs with a tubular structure exhibit 

almost 5 times of elastic modulus and nearly 100 times tensile strength compared to high strength 

steels. Therefore, it is expected that CNTs can upgrade the mechanical properties of Al2O3 and make it 

suitable for numerous advanced applications. For example, Zhan et al. [21] reported a fracture 

toughness of 9.7 MPa·m1/2 in 10 vol% single-walled carbon nanotubes manufactured by spark plasma 

sintering (SPS) technique versus only 3.7 MPa·m1/2 for the matrix, in alumina composites. Bi et al. 

fabricated fully dense composites of multi-walled carbon nanotubes (MWCNTs) with alumina matrix 

by using hydrothermal crystallization methods and followed by hot-pressing. The bending strength 
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and fracture toughness of the sample were increased by 24.6 % and 80.3 % respectively compared 

with monolithic alumina [22]. Bocanegra-Bernal et al. [23] reported that for 0.1 wt% MWCNT/Al2O3 

composites, the fracture toughness had an increase of 63 % compared with the monolithic alumina. 

Wang et al. [20] claimed that the alumina grain growth was remarkably inhibited by boron nitride 

nanotubes (BNNTs), and the fracture toughness and bending strength were increased by 31 % and 

67 % for the composites containing 1.0 and 2.0 wt% of BNNTs, respectively. Given that the 

incorporation of SWCNTs may provide more potential for strengthening and toughening, the effect of 

SWCNTs content on the mechanical properties of Al2O3-based ceramics was investigated in this 

paper. Spark plasma sintering was employed to obtain Al2O3-SWCNTs composites, and the effect of 

sintering temperatures was also investigated. 

2.  Materials and methods 

In the present work, alumina powder with the addition of nanopowder of the same composition in the 

amount of 6 % was used as the matrix base. Commercial SWCNTs «Tuball» were purchased from 

OCSiAl, Russia (content of SWCNTs ∼ 75 wt%, diameter 1–3 nm and length 1–5 µm). The SWCNTs 

was dispersed in ethanol by means of ultrasonic treatment during 5 min and a drop of the suspension 

was transferred onto a copper grid and by means of transmission electron microscope JEM-2100F 

(JEOL) its morphology was studied. The measurements of particle size distribution of initial Al2O3 

powder by means of laser diffraction method were performed with SALD-7101 (Shimadzu). The 

specific surface area of the Al2O3 powder, SWCNTs and Al2O3-SWCNTs composite powder was 

measured by BET technique using installation Sorbi-M (META). Before mixing, the SWCNTs were 

first dispersed in ethanol for 30 min by ultrasonic bath (110 W, 35 kHz) to obtain homogeneous 

ethanol-SWCNTs suspension. Next, an alumina was added to this suspension at the ratio of the 

SWCNTs 3 vol% and then ultrasonic dispersion was continued for an additional 30 min. After the 

expiration of the ultrasonic dispersion, the processed composite suspension was put on a magnetic 

stirrer and agitation was performed for 30 min. After mixing, the slurry was dried at 120 °C for 3 h. 

The morphology and detailed structure of composite powder were observed by scanning electron 

microscope JSM-7500FA (JEOL). The resulting powder mixture was placed into a graphite die with 

an inner diameter of 14 mm and then spark plasma sintered at 1500 °C and 1600 °C respectively for 

10 min under a uniaxial load of 40 MPa in vacuum. A heating rate of 100 °C/min was employed. For 

comparison, monolithic Al2O3 ceramics were sintered under the same conditions. The bulk density of 

the sintered samples was measured using the Archimedes method with distilled water as the 

immersing medium. The relative density was calculated by dividing the bulk density by the theoretical 

density. Vickers indentation tests were carried out to evaluate the microhardness (HV) and fracture 

toughness (KIC) of sintered Al2O3 and composites at room temperature. Tests were performed on 

sample surfaces using a Vickers indenter with a load 4.9 H (PMT-3M, LOMO). The fracture 

toughness was calculated by using the equation given by Anstis [24]. Analysis of the phase 

composition and the parameters of the crystal structure of the samples were determined by X-ray 

diffraction (XRD) equipment diffractometer of XRD-7000S (Shimadzu) type using Cu-Kα radiations 

(λ = 1.54056 Å). The tube voltage and current were 40 kV and 30 mA respectively. Scan range and 

sampling pitch were 10 ° – 120 ° and 0.03 °, respectively. XRD data were used to calculate size of the 

coherently diffracting domain (CDD). 

3.  Results and discussion 

Figure 1a shows the TEM-image of the SWCNTs. It is seen that nanotubes are bundles of various 

widths with sphere-shaped catalyst particles on them or agglomerates of the catalyst particles, which 

are also sphere-shaped. A large number of bundles have a cross-sectional dimension of 10-40 nm. 

However, there are even larger bundles up to 200 nm. The bundles of SWCNTs have a flattened 

ribbonlike shape. Individual nanotubes occur in the images very rarely. Owing to its nanometric 

diameter, a SWCNT has a very large specific surface area 546.45 m2/g [25]. The SEM image of 

composite powder containing 3 vol% of SWCNTs is shown in Figure 1b. Disentangled SWCNTs are 
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well dispersed among Al2O3 powder, however, some agglomerates/bundles could be observed. No 

evidence of nanotubes damage after mixing can be observed. As seen in Fig. 1b, the unique flexible 

nature of SWCNTs makes them bend and pass through space between particles or wrap around them. 

Specific surface area of alumina powder and alumina/SWCNT composite powder are 1.45 m2/g and 

5.16 m2/g, respectively. Figure 1c shows the particle size distribution of initial Al2O3 powder. The 

sizes of alumina particles are distributed in the ranges of 97–409 nm, 453–842 nm, 933 nm–1.920 µm 

and 2.129–9.992 µm, which further confirms the observed result from SEM (Figure 1b) and the size 

with different ranges may beneficial for dense packing of particles. The average particle size of 

alumina powder is 1.71 ± 0.45 µm. 

 

   
 

Figure 1. (a) TEM image showing morphology of SWCNTs, (b) SEM image showing morphology 

of composite powder and (c) particle size distribution of Al2O3 powder. 

 

After sintering by SPS, the produced materials were designated as A-1500, A-1600, AS-1500 and 

AS-1600 for samples of Al2O3 ceramics sintered at 1500 °C and 1600 °C and Al2O3/SWCNT 

composites sintered at the same temperatures. The relative density, Vickers microhardness and 

fracture toughness are reported in Table 1. From Table 1 it can be seen that an increase in the sintering 

temperature of Al2O3 ceramics to 1600 °C does not lead to an increase of the relative density; it is 

almost the same for both samples and was > 97 %. The relative density of composites (∼ 96 %) was 

slightly lower than that of Al2O3 ceramics, showing that SWCNTs inhibit the densification upon 

sintering, as observed in other studies [26-29]. The decrease in the sintered density upon the SWCNTs 

addition is due to the slightly reduced densification that leads to the increase of pores. 

 

Table 1. Properties of the samples: ρ: relative density; HV: Vickers microhardness 

and KIC: fracture toughness (average, minimum/maximum values are indicated). 

Sample ρ, % HV (GPa) KIC (MPa·m1/2) 

A-1500 97.43 18.40 (16.94/19.70) 4.65 (4.00/5.16) 

A-1600 97.20 17.64 (16.12/18.78) 4.34 (3.71/4.95) 

AS-1500 95.91 16.58 (12.00/20.41) 4.94 (4.30/5.45) 

AS-1600 96.10 16.60 (13.38/20.01) 3.95 (2.01/5.34) 

 

The average microhardness of composites (16.60 GPa) is lower than that of Al2O3 ceramics 

(∼ 18 GPa) and has a higher scatter of values. The decrease in the microhardness by the addition of 

3 vol% SWCNTs was attributed mainly to the decrease in the composite density. In addition, 

nanotubes are a soft phase. Although the hardness of SWCNTs was unknown, given that SWCNTs 

come from the graphitic family of carbon with dominantly sp2 bonds mixed with sp3 bonds, their 

hardness should be lower than that of Al2O3. Another factor is that the reinforcing phase usually 

creates tensile stresses in the crystals of the matrix and at their boundaries. Further, not very high 

sintering temperature also resulted in poor SWCNT/Al2O3 interface that led to insufficient load 

sharing between filler and matrix in nanocomposites. However, it is worth noting that composites have 

high microhardness values (20.41 GPa and 20.01 GPa) that exceed the values of HV for alumina 

a b 

c 
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ceramics (Table 1). For a significant increase in the microhardness of composites with CNT required 

higher sintering temperature to achieve better consolidation and proper interface performance. 

The fracture toughness of the AS-1500 composite is higher than that of samples A-1500 and A-

1600 by 6 % and 12 %, respectively. The role of SWCNTs was indeed substantial, because the high 

strength, impressive flexibility and very high aspect ratio of the CNTs offered great potential for them 

to hold and resist the crack opening through elastic deformation. In this manner, SWCNTs worked 

efficiently for dissipating energy via transferring the stresses from one grain to another during the 

entire loading event, and for direct absorbing energy. Zharikov et al. [30] showed that alumina 

composite with 3 vol% CNTs have fracture toughness (6.6 MPa·m1/2) two times higher as compared to 

the initial ceramic material (3.2 MPa·m1/2). Kim et al. [31] have reached the maximum improvement 

in fracture toughness (about 40%, 4.68 MPa·m1/2 vs 3.32 MPa·m1/2) in 3 vol% CNTs/alumina 

composites. Zhang et al. [32] obtained the maximum increase in fracture toughness (24 %, 

4.1 MPa·m1/2 vs 3.3 MPa·m1/2) by addition of 1 vol% CNTs. However, they reported only 6 % 

(3.5 MPa·m1/2) enhancement in fracture toughness for 3 vol% CNTs/Al2O3 composites.  

Figure 2 shows X-ray diffractograms and phase identification of powders SWCNTs (a), Al2O3 (b) 

and sintered samples A-1500 and A-1600 (c, d), AS-1500 and AS-1600 (e, f). It can be seen that the 

phase composition of the Al2O3 powder corresponds to the corundum (α-Al2O3) phase of the trigonal 

syngony (JCPDS No. 01-078-2426) [33], the CDD size of 48 nm (Figure 2b). Phase composition of 

the SWCNTs powder (Figure 2a) consists corresponds to graphite phase (JCPDS No. 01-075-1621) 

[33, 34], the CDD size of 8 nm. The existence of (110) lattice planes indicates a developed in-planar 

graphitic structure and (101) planes can be considered to be to the foreign of three-dimensional 

stacking, mainly caused by the lack of defects in the SWCNT [34]. In addition, SWCNTs powder 

contains catalyst residues corresponding to the bcc structure, in the apparent, of Fe (JCPDS No. 01-

085-1410) with a lattice parameter of 2.88686·10-10 and Fe3C (JCPDS No. 35-0772). 

 

 
 

Figure 2. X-ray diffractograms and phase identification of powders SWCNTs (a), Al2O3 (b) and 

sintered samples A-1500 and A-1600 (c, d), AS-1500 and AS-1600 (e, f). 

 

After sintering of Al2O3 powder (A-1500 and A-1600), a two-phase state is formed with the 

creation of a second carbon-like structure, the integral intensity of which is 7 % and 19 %, respectively 

(Figure 2c, d). Apparently, this may be due to the contamination of the powder during the granulation 

of Al2O3 or with graphite paper residue after SPS sintering. The CDD size of the main phase α-Al2O3 

is 81 nm (A-1500) and 80 nm (A-1600), the second carbon-containing phase is 33 nm (A-1500) and 

41 nm (A-1600). Only peaks corresponding to crystalline α-Al2O3 were in the diffractograms of the 
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AS-1500 and AS-1600, whereas CNT peaks were absent (Figure 2e, f). Owing to small quantity of 

SWCNTs in the composites (3 vol%) and strong matrix peaks, identification of sp2 carbon phase was 

not possible [35-37]. The CDD size of α-Al2O3 with increasing sintering temperature was constant and 

amounted to 82 nm. 

4.  Conclusions 

The effect of SWCNTs on sintering behavior and mechanical properties behavior of Al2O3/SWCNTs 

composites obtained by spark plasma sintering was investigated. The following conclusions can be 

drawn from this study: 

 Sintered densities ∼ 96 % of theoretical density were obtained in the composites. 

 The average microhardness of the composites was lower than that of Al2O3 ceramics, but 

there were also high microhardness values of composites (20.41 GPa). 

 The fracture toughness (4.94 MPa·m1/2) of the AS-1500 composite was higher than that of 

Al2O3 ceramics samples A-1500 and A-1600 by 6 % and 12 %, respectively. 

 The phase composition of the composites corresponds to the crystalline α-Al2O3, SWCNT 

peaks were absent. The CDD size of α-Al2O3 with increasing sintering temperature was 

constant and amounted to 82 nm. 
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