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Abstract. This paper is devoted to the study of the mechanical and tribological properties of a-

C:H:SiOx films deposited on a titanium alloy VT1-0 by a plasma chemical deposition method 

using pulsed bipolar bias voltage. It was shown that after deposition of 2 µm-thick a-C:H:SiOx 

film on a titanium alloy VT1-0 sample, the root-mean-square surface roughness Rq measured 

using atomic force microscopy decreased from 74 to 50 nm compared to the original substrate. 

The surface hardness H measured using nanoindentation increased from 3.3 to 12.4 GPa with 

an almost unchanged elasticity modulus E. As a result, the plasticity index (H/E) of titanium 

samples increased from 0.03 to 0.11, and the plastic deformation resistance (H3/E2) increased 

from 3 to 156 MPa. Deposition of a-C:H:SiOx film on the titanium alloy VT1-0 surface makes 

possible to reduce the friction coefficient from 0.3-0.6 to 0.1 and the wear rate from 6·10-4 to 

7·10-6 mm3/Nm. 

1. Introduction 

Presently, a lot of attention is given to ensuring the durability of metal parts of machines and 

mechanisms by creating thin-film coatings on their surfaces. The most common coatings are nitride 

(TiAlN, TiAlCrYN, TiCN, TiN) and carbon-based coatings (DLC) that can reduce friction and wear 

rates. The addition of SiOx to DLC allow to reduce internal stresses in DLC films that provides 

excellent adhesion to many types of substrates and makes it possible to form tens of micrometers thick 

films [1,2]. On top of that, SiOx containing DLC (a-C:H:SiOx) films are characterized by high hardness 

(10-20 GPa) and elasticity modulus (30-150 GPa) [2-4], low friction coefficient of about 0.02-0.2 [1,5] 

and wear rate 10-5-10-8 mm3N-1m-1 [5,6], high transparency in the visible and near IR wavelength 

region (~80-85%) [7,8], excellent biocompatibility with human body [1]. Due to the unique properties 

of a-C:H:SiOx films, they can be used as wear-resistant anti-friction coatings on parts of internal 

combustion engines, in MEMS technologies, medicine, industry, lithography [9] and other fields. 

The most common method for such films forming is the radio-frequency plasma-assisted chemical 

vapor deposition (RF PACVD) [5,10,11]. Koshigan et al. [1] studied influence of hydrogen and 

oxygen pressure on tribological characteristics of a-C:H:SiOx films deposited on silicon wafers. 

Friction experiments were performed with a linear reciprocating pin-on-flat tribometer, using 52100 

steel pins. The authors showed that there are optimal values of gas pressure (H2 and O2) in the process 

of testing at which minimum values of the friction coefficient (0.02±0.01) are observed. Neerinck et 
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al. [12] studied tribological properties of a-C:H:SiOx films also deposited on silicon substrates. 

Unlubricated sliding ball-on-disk experiments were performed at room temperature using AISI L3 

steel bearing ball. It was shown that in air at a relative humidity (RH) 50% the friction coefficient was 

0.04–0.08, while at a relative humidity of 90% and under water, it was lower than 0.15. The wear rate 

calculated from the profilometry measurement of the wear track area was 2·10-7 mm3N-1m-1 in air of 

50% RH and only 3.5·10-8 mm3N-1m-1 under water. Venkatraman et al. [13] studied effect of 

temperature annealing on the tribological properties of a-C:H:SiOx films deposited on silicon. The 

wear rate of the annealed films was measured in air at room temperature with a relative humidity of 

~35% using a ball-on-disk tribotester with WC ball. The authors showed that with an increase in the 

annealing temperature in air, graphitization of a-C:H:SiOx films occurs, as a result of which 

mechanical and tribological properties deteriorate, in particular, an increase in wear rate from 

(1÷10)·10-8 to (8÷50)·10-7 mm3N-1m-1 is observed. Jana et al. [14] studied tribological properties of a-

C:H:SiOx films deposited on glass substrates at different relative humidity of the environment. The 

wear and friction characterization was performed using ball-on-disc tribometer with WC ball. In this 

paper was shown that increase in relative humidity from 35 to 80% leads to an increase in the friction 

coefficient from 0.005 to 0.074, while the wear rate is reduced from 9.8·10-8 to 2.7·10-8 mm3N-1m-1 

with increasing relative humidity from 35 to 50%. A further increase in relative humidity up to 80% 

leads to an increase in the wear rate. Bhowmick et al. [6] have studied tribological characteristics of a-

C:H:SiOx films deposited on M2 grade tool steel coupons. Pin-on-disk type sliding tests were 

performed with 319 Al alloy pins. At a room temperature, a-C:H:SiOx films had friction coefficient of 

0.17 and wear rate of 2.86·10-5 mm3N-1m-1. At temperature of 400 °C, the friction coefficient was 0.11, 

and wear rate was 16.23·10-5 mm3N-1m-1. Jedrzejczak et al. [5] have studied tribological characteristics 

of a-C:H:SiOx films deposited on cylindrical samples of Ti6Al7Nb alloy in combination with different 

counterbodies. A ball-on-disc tribometer with AISI 316L and ZrO2 balls was used. The relative 

humidity was 30%. In this paper, the authors have shown that a-C:H:SiOx films have a minimal 

friction coefficient of 0.04-0.07 at using of both balls. In this case, the wear rate for a-C:H:SiOx films 

was from 1.43·10-7 to 3.97·10-7 mm3N-1m-1. 

This paper is devoted to the study of the mechanical and tribological properties of a-C:H:SiOx films 

deposited on a titanium alloy VT1-0 by plasma chemical deposition method using pulsed bipolar bias 

voltage applied to substrate. The titanium alloy VT1-0 (Ti content is ~ 99.24-99.7%) is widely used in 

aircraft and rocket production, medicine and other areas. However, it is known that titanium alloys 

have the high surface reactivity, low work hardening coefficient, low shear strength, high value of a 

friction coefficient and a wear rate [15]. 

2. Materials and Methods 

Deposition of a-C:H:SiOx films was realized on vacuum installation equipped with plasma generator 

with heated cathode working in mixture of argon and polyphenyl-methylsiloxane (PPMS) vapor. 

PACVD deposition system has been described in detail in [16]. Vacuum in the chamber to a pressure 

of 10-2 Pa was realized by turbomolecular pump. 

Made from titanium alloy VT1-0 samples (size 2×2 cm2 and thickness 0.4 cm) were used as the 

substrates. The distance between the plasma generator and the substrate was 100 mm. Before a-

C:H:SiOx films deposition, the substrates were pre-cleaned in argon plasma for 6 minutes. In this case 

argon pressure in chamber was 0.3 Pa, discharge voltage - 100 V, discharge current - 11  A, magnetic 

induction in the substrate area - 3 Gs. Bipolar bias voltage with negative pulse amplitude of 1000 V, 

with frequency of 100 kHz and the positive impulse duration of 4 µs was applied to the substrate 

during plasma cleaning. After that, a-C:H:SiOx film was deposited at argon pressure of 0.1 Pa, PPMS 

flow rate of 95 µl/min, discharge voltage of 140 V, discharge current of 6  A and magnetic induction 

of 3 Gs. During the film deposition, the negative pulse amplitude of the bipolar bias voltage was 

reduced to 500 V. Film deposition rate was 3±0.3 µm/h. In [16], we showed that in this deposition 

regime, the hardest films with the highest sp3-bonded carbon content are formed on Si substrates. 
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The deposited a-C:H:SiOx films were investigated by different characterization techniques. Raman 

spectroscopy (Centaur U HR complex) with 532 nm Ar laser (beam cross-section of 50 μm) was used 

for recording of spectra. These spectra were obtained in a spectral range of 800–1800 cm–1 with a 

resolution better than 1.5 cm–1. From the Raman spectra it is possible to obtain information about the 

carbon bonds in the film. For this, the spectra were divided into Gaussians and the position, width, and 

intensity of the D and G Raman peaks were determined. Hardness (H) and coefficient of elasticity (E) 

of the a-C:H:SiOx films were determined by NanoTest 600 device (MicroMaterials, Great Britain) at 2 

mN load by Oliver–Pharr method [17]. The surface morphology of the samples was studied by atomic 

force microscopy using AFM Solver P47 (NT-MDT, Russia) microscope. The friction coefficient was 

determined using the THT-S- AX0000 (CSM Instruments, Switzerland) tribometer in the "ball on 

disk" geometry. A ball with a radius of 3 mm made of VK-6 alloy was used as counterbody. The 

rotation speed of the disk was 5 cm/s, and rotation frequency was 2 Hz at normal load 5 N. Air 

temperature was 25 °C during the test, and the relative humidity was 50%. Wear rate was estimated by 

method described in [18]. The film thickness was measured by a Linnik microinterferometer MII 4 

(LOMO, Russia). 

3. Results 

3.1. Atomic force microscopy results 

The surface morphology of the samples was studied on initial substrate made from titanium alloy 

VT1-0, polished by an abrasive paper, and the same substrate coated by a-C:H:SiOx film. The surface 

of initial sample had a granular structure with grains of approximately 100 nm in width and 50- 100 

nm in height (figure 1,a). After deposition of a-C:H:SiOx film with the thickness of 2±0.2 µm, the 

substrate surface became smoother. Root-mean-square surface roughness Rq decreased from 74 to 50 

nm. Table 1 presents samples surface roughness values before and after film deposition. In [19] it was 

shown that the wear rate of DLC films depends on the substrate surface roughness, and latter is the 

decisive parameter for the wear resistance of the DLC to external loads. 

Table 1. Surface roughness characteristics. 

Sample Rmean (nm) Rmax (nm) Rq (nm) Ra (nm) 

Initial substrate 258 461 72 57 

Coated substrate 134 412 54 43 

Rmean – mean peaks height, Rmax – maximum peaks height, Rq – root-mean-square surface roughness, 

Ra – arithmetic-mean surface roughness. 

 

  

Figure 1. AFM images of initial VT1-0 sample (a) and coated with a-C:H:SiOx film (b) 

(a) (b) 
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3.2. Mechanical characteristics research 

The comparison was made between the hardness and the elastic modulus of the initial VT1-0 sample 

and a sample with a-C:H:SiOx film (figure 2). It is noticeable that after deposition of a-C:H:SiOx film, 

the surface hardness increased from 3.3 to 12.4 GPa. Herewith the elastic modulus of both samples 

remains almost unchanged – 112.9 and 110.5 GPa. Although hardness is important material property 

which defines wear resistance, it is considered that the elastic modulus also has an important influence 

on wear behavior. In particular, the elastic strain to failure, which is related to the ratio of hardness and 

elastic modulus, is a more suitable parameter for predicting wear resistance [20]. 

 

 

Since the hardness grew almost 4 times with a practically unchanged elasticity modulus on the 

sample with a-C:H:SiOx film, then the elastic-plastic characteristics of the surface (elastic index H/E 

and plastic resistance H3/E2) changed significantly. In particular, elastic index increased from 0.03 to 

0.11 and plastic resistance increased from 3 to 156 MPa. The increase in these characteristics indicated 

an improvement in the wear resistance of the sample surface. Table 2 gives mechanical and elastic-

plastic characteristics of the samples surface. 

Table 2. Mechanical and elastic-plastic characteristics of the samples surface. 

Sample H (GPa) E (GPa) H/E H3/E2 (MPa) 

Initial substrate 3.3 112.9 0.03 3 

Coated substrate 12.4 110.5 0.11 156 

3.3. Tribological properties research 

After deposition a-C:H:SiOx film, the friction coefficient of the sample surface decreased from 0.3-0.6 

to 0.1 (figure 3). The initial sample had a friction coefficient that varied in the range from 0.3 to 0.6 

and was not stable with time. The reason of the friction scattering was not clear. After film deposition, 

the friction coefficient not only decreases, but also its oscillations become less pronounced. Except for 

a short running-in period at the beginning, the sliding on the films soon turns to a stable friction. 

  
 

Figure 2. Mechanical characteristics of initial VT1-0 sample and coated with a-C:H:SiOx film 
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Figure 3. Friction behaviours of initial VT1-0 sample (a) and coated with a-C:H:SiOx film (b) 

Figure 4 show the optical images of wear track of both samples. Wear rate of the sample with a-

C:H:SiOx film, calculated from profile of wear track, decreased from 6·10-4 to 7·10-6 mm3/N·m in 

comparison with initial sample. It is clearly seen that the wear track on the VT1-0 sample (figure  4-a) 

is wider and deeper, while on the sample with the film it is narrower and less deep. 

We have previously shown that a-C:H:SiOx film deposited on the GaAs substrate has higher 

friction coefficient (0.16) and greater wear rate (1.3·10−5 mm3/N·m) [21]. Such a difference in film 

characteristics may be caused by a difference in film deposition conditions, namely another negative 

pulse amplitude of the substrate bias voltage and Ar pressure during deposition. 

In paper [22], an influence of electron-ion plasma treatment on tribological properties of a titanium 

alloy VT1-0 sample was studied. Combined processing in a single vacuum cycle was used for the 

surface modification. It included nitriding in low-pressure arc plasma and subsequent TiN coating 

deposition. It was shown that the combined treatment provides the formation of a modified layer 

which decreases the friction coefficient from 0.4 to 0.3 and the wear rate from ~3·10-4 to ~8·10-6 

mm3/N·m. It suggests that a-C:H:SiOx films are comparable in wear rate to the nitride coating, but 

significantly exceed it in terms of reducing the friction coefficient. 

3.4. Raman spectroscopy 

Raman spectroscopy is one of the simplest methods for determining the structure of carbon-based thin 

films and gives information about the content of sp3- and sp2-hybridized carbon atoms in film. 

Properties of the deposited films depend on the prevalence of one or another hybridization type. 

Raman spectrum of a-C:H:SiOx film has wide peak in wavenumber range 1000-1700 cm-1 typical for 

   
Figure 4. Optical images of wear track of VT1-0 sample (a) and sample with a-C:H:SiOx film (b) 

(a) (b) 
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DLC films (figure 5). This peak was decomposed on two Gaussians, corresponded to D (disordered) 

and G (graphite) peaks and their position, full width at half-maximum (FWHM), peak intensity ratio 

ID/IG were determined (table 3). 

 
Figure 5. Raman spectrum of a-C:H:SiOx film deposited on VT1-0 sample 

Table 3. Results of analysis of Raman spectrum of a-C:H:SiOx film. 

ωD (cm-1) ГD (cm-1) ωG (cm-1) ГG (cm-1) ID/IG 

1330 334 1494 189 0.83 

ω – peaks position, Г – full width at half maximum (FWHM), ID/IG – intensity ratio. 

Conclusions 

The results of this study showed that the deposition a-C:H:SiOx films on the VT1-0 samples allows: 

 to increase the surface hardness from 3.3 to 12.4 GPa with a practically unchanged elasticity 

modulus (110-113 GPa) and, consequently, to increase plasticity index H/E from 0.03 to 0.11 

and plastic resistance H3/E2 from 3 to 156 MPa; 

 to reduce friction coefficient and wear rate by 3.7 times and 85 times, respectively. 

Consequently, obtained a-C:H:SiOx films can be used to increase the durability of products made 

from titanium alloy VT1-0 in aircraft manufacturing, medicine and other industries. 
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