с. Нерчинский Завод, на территории Воздвиженского месторождения Благодатского рудника. После мокрого озоления проб растительных образцов тяжелые металлы (Zn, Cd, Pb и Cu) определяли методом инверсионной вольтамперометрии на анализаторе «ТА-Универсал». Статистическая обработка проводилась в программе ТА-Lab и рассчитывалось среднее содержание и ошибка среднего.

Результаты и их обсуждение. Основным источником поступления тяжелых металлов в растения является почва. Размеры перехода их в растения являются сложной функцией, зависящей от влияния многих факторов: концентрации загрязнителей в почве, свойств почвы, видовых особенностей растений, условий произрастания, погодно-климатических особенностей района исследования и др. Вместе с тем диапазон варьирования значений весьма широк. Однако в условиях воздействия техногенеза отмечается превышение уровня ПДК и наличие превышение порога токсичности пределов накопления цинка, кадмия, свинца и меди.

При анализе данных, полученных в ходе исследования, было выяснено, что наибольшее содержание цинка было в молодых побегах берёзы — 1853±614 мг/кг. ПДК цинка в пищевых

продуктах составляет 10,0 мг/кг и этот показатель превышен в 185,3 раза. Однако в листьях этого же растения содержание цинка оказалось гораздо меньшим -20 ± 7 мг/кг.

Наибольшее содержание кадмия отмечалось в листьях смолёвки енисейской — 43,5±140 мг/кг (ПДК в пищевых продуктах 0,03 мг/кг), и превышает ПДК в 1450 раз. В цветках содержание кадмия составляет 2,1 мг/кг. Наибольшее содержание свинца наблюдалось также в листьях смолёвки енисейской — 143±50 мг/кг (ПДК 0,5 мг/кг), что превышает гигиенический норматив в 286 раз. В других органах этого вида содержание было гораздо меньшим — в стеблях 0,45 мг/кг, в цветках 4,7 мг/кг.

Наибольшее содержание меди так же отмечалось у смолевки енисейской, в корнях растения было до 232 ± 88 мг/кг, что превышало ПДК в 23,2 раза (ПДК 10 мг/кг).

Таким образом, выявлено, что только ряд видов растений интенсивно накапливает в сво-их органах экотоксиканты. Смолевка енисейская относится к роду растений, многие из которых характеризуются как активные накопители тяжелых металлов и их относят к группе гипераккумуляторов и аккумуляторов ксенобиотиков.

Список литературы

- 1. Михайлова Л.А., Солодухина М.А. Природные и антропогенные биогеохимические провинции Забайкальского края // Современные проблемы науки и образования, 2001.— №5.— С.310—322.
- 2. Морозов И.В. Нерчинский Завод / Электр. энцикл. Забайкалья.— http://ez.chita.ru/
- encycl/concepts/?id=4567 [дата обращения 19.02.2019].
- 3. Быбин Ф.Ф. Благодатский рудник / Электр. энцикл. Забайкалья.— http://ez.chita.ru/encycl/concepts/?id=4254 [дата обращения 19.02.2019].

СРАВНИТЕЛЬНОЕ ИССЛЕДОВАНИЕ СОРБЦИОННЫХ СВОЙСТВ МОДИФИЦИРОВАННОГО ГЛАУКОНИТА И ГРАВИЯ В ОТНОШЕНИИ МИКРОБИОЛОГИЧЕСКИХ ЗАГРЯЗНЕНИЙ

Г.Д. Вачадзе, И.В. Мартемьянова Научный руководитель – к.х.н. Е.В. Плотников

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, vachadzeg@mail.ru

Важнейшим санитарно-гигиеническим критерием, который проходит строгий контроль, является наличие в воде микробиологических загрязнителей. Поэтому одной из важнейших

задач является изучение свойств и создание эффективных сорбционных материалов для удаления микробиологических загрязнителей из воды [1].

Глауконит. Коли-Цеолит. Коли-Гравий. Количе-Начальная Фракционное соотночество бактерий чество бактерий ство бактерий концентрация шение сорбента, %. после фильтрапосле фильтрапосле фильтрабактерий, КОЕ/мл ции, КОЕ/мл ции, КОЕ/мл ции, КОЕ/мл $(\le 0,1/0,1-0,5 \text{ mm}) - 20/80$ 0

 $7 \cdot 10^{4}$

Таблица 1. Результаты оценки эффективности адсорбентов при извлечении из воды бактерий E.coli

Главной целью данного исследование является сравнительная оценка сорбционной эффективности различных фракций, модифицированных глауконита, цеолита и гравия при очистке воды от биоконтаминантов. Основным материалом при выполнении исследовательской работы послужил глауконит, добытый в Бакчарском районе Томской области. В качестве тестового параметра оценивалось содержание в воде бактерий E. coli. В ходе работы также была произведена оценка пропускной способности взятых нами сорбентов. Исследуемые сорбенты на основе глауконита (Бакчарское месторождение), цеолита (Бакчарское месторождение) и гравия (Бакчарское месторождение) загружались в засыпной фильтровальный модуль (стеклянная трубка, длина 150 мм, внутренний диаметр 8 мм), в количестве от 5 до 10 г, в определенном фракционном соотношении. Для получения необходимой фракции сорбенты механически измельчались, затем просеивались через соответствующие сита. Модификация производилась химическими методами. Модельная бактериальная суспензия готовилась на водопроводной воде, в которую вносилась культуры $E.\ Coli\ до$ достижения конечной концентрации в 2,5 • 107 КОЕ/мл. Бактериальная суспензия пропускалась через фильтровальный модуль с исследуемым материалом под действием перистальтического насоса. При пропускании 100 мл опытного раствора через фильтр отбирается проба в стериль-

 $(\le 0,1/0,1-0,5 \text{ mm}) - 10/90$

 $2,5 \cdot 10^7$

ных условиях.

Для определения микробиологических агентов в пробе переносили исследуемый материал (методом Коха) на чашки Петри с подготовленной питательной средой на основе МПА, которые в дальнейшем помещались в термостат при 37°С. После 24 часов определялось число зараженных областей, которое выражалось колониеобразующими единицами (КОЕ) в 1 мл образца. Результаты по очистки модельного раствора фильтрами на основе разных наполнителей в динамике представлены ниже в таблице 1.

 $1.7 \cdot 10^{5}$

 $5 \cdot 10^{6}$

Было показано, что различные фракции всех исследованных сорбентов продемонстрировали умеренную эффективность по очистке воды от бактерий. При этом только при пропускании бактериальной суспензии через фильтры с фракционным соотношением 20/80 наблюдалось полное извлечение микроорганизмов. Поверхностная модификация сорбентов позволила очистить модельный раствор до допустимых нормативов к питьевой воде. Было выявлено, что модифицированный глауконит обладает лучшими сорбционными свойствами относительно других материалов. В результате проведённых исследований изготовленных нами фильтров установлено, что глауконит Бакчарского месторождения имеет перспективы применения в качестве эффективного фильтровального материала, а модификация поверхности позволяет усилить сорбционные свойства материалов.

Список литературы

1. E. Plotnikov, I. Martemianova, D. Martemianov, S. Zhuravkov, T. Kan, O. Voronova. The study of surface parameters and sorption properties of aerated concrete-based sorbents for water

purification from E. Coli bacteria // Journal of Materials and Environmental Science, 2016.—7(11).—3944—3948.