46 ХVІ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

ВЛИЯНИЕ МЕХАНИЧЕСКОЙ АКТИВАЦИИ НА НАВОДОРАЖИВАНИЕ ПОРОШКА Ti-Ni

<u>Е.В. Абдульменова</u>, С.Н. Кульков Научный руководитель: профессор, д.ф.-м.н. С.Н. Кульков Томский политехнический университет, ИФПМ СО РАН Россия, г. Томск, пр. Ленина, 30, 634050; пр. Академический, 2/4, E-mail: <u>eva5@tpu.ru</u>

EFFECT OF MECHANICAL ACTIVATION OF HYDROGENATION OF TI-NI POWDER

<u>E.V. Abdulmenova</u>, S.N. Kulkov Scientific Supervisor: Prof., Dr. S.N. Kulkov National Research Tomsk Polytechnic University, ISPMS SB RAS Russia, Tomsk, Lenin str., 30, 634050; Academic str., 2/4 E-mail: eva5@tpu.ru

Abstract. It has been studied an effect of mechanical activation in a planetary ball milling on the electrochemical hydrogenation of Ti-Ni powder. With an increase in the time of mechanical activation was formed state with small the coherently diffracting domain which correspond to quasi-amorphous state of material. There is an incubation time hydrogenation for mechanical activation, when hydrogenation is not occurring. Mechanical activation for more than 30 s leads to the formation of the Ti₂NiH_x phase based on the Ti₂Ni and 50 s activation is sufficient to form the Ti₂NiH_{0.5} stoichiometry. For a longer mechanical activation a phase with the stoichiometry Ti₂NiH_{0.85} was formed.

Введение. Титан-никелевые сплавы являются перспективными материалами для применения в никель-металлогидридных батареях [1]. Известно, что при взаимодействии водорода с металлами наблюдается изменение параметра решетки [2], в частности в [3] показано, что водород увеличивает параметр решетки фазы B2-TiNi с 0,3025 нм до 0,3047 нм, а в [4] обнаружили, что он увеличивается с 0,301 нм до 0,31 нм. Известно [5], что увеличение дефектности материала способствует росту диффузии водорода [6], при этом для увеличения плотности дефектов используют высокоэнергетическую механическую активацию [7-10], которая особенно эффективна для порошковых материалов. Однако подобных исследований для системы Ti-Ni вблизи эквиатомного состава не проводились.

Цель работы – изучить влияние механической активации на наводораживание порошка Ti-Ni.

Материалы и методы исследования. В работе исследовался промышленный порошок ПН55Т45, производства АО «Полема». Механическая активация (МА) проводилась в планетарной шаровой мельнице «АГО-2». Наводораживание проводили электролитическим методом [11]. Исследование распределения частиц по размерам выполняли методами сканирующей электронной микроскопии (СЭМ) (TESCAN VEGA 3SBH) и лазерной дифракции (ЛД) (SALD-7101). Анализ фазового состава и параметров кристаллической структуры порошка проводился методом дифракции рентгеновских лучей на дифрактометре с Cu-K_a излучением. Площадь удельной поверхности (S_{ya}) порошка измеряли методом БЭТ на приборе серии Sorbi.

ХVІ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

Результаты и их обсуждение. В таблице 1 представлен средний размер частиц и размер области когерентного рассеяния (ОКР) порошка Ti-Ni в исходном состоянии и после MA. По данным СЭМ видно, что MA происходит в две стадии: на первой стадии до 30 с MA происходит уменьшение среднего диаметра частиц, по сравнению с исходным состоянием порошка, на второй стадии от 30 с до 300 с наблюдается агломерации частиц, по-видимому, связанная с избыточной поверхностной энергией. Размер ОКР значительно меньше, чем размеры полученные методами ЛД и БЭТ, т.е. частицы имеют поликристаллическую структуру, при этом при максимальном времени MA размер ОКР составляет порядка 5 нм, что соответствует рентгеноаморфному состоянию порошка.

Таблица 1

Время механической активации, с	<d<sub>СЭМ> (мкм) / St.dev. (мкм)</d<sub>	<d<sub>лд> (мкм) / St.dev. (мкм)</d<sub>	$S_{ya} (M^2 \cdot r^{-1}) / St.dev.$	<d<sub>бЭТ> (мкм)</d<sub>	ОКР (нм)
0	11,1 / 7,5	7,9 / 0,2	0,24 / 0,43	3,9	43
10	11,0 / 7,6	7,6 / 0,3	0,28 / 0,20	3,3	21
30	7,8 / 6,6	6,1 / 0,2	0,37 / 0,01	2,5	17
60	13,8 / 9,8	6,0 / 0,2	0,49 / 0,04	1,9	8
300	33,2 / 25,7	0,5 / 0,2	0,54 / 0,09	1,7	5

Средний размер и размер области когерентного рассеяния (ОКР) порошка никелида титана

Исходный порошок Ti-Ni имеет сложный фазовый состав: TiNi в кубической и моноклинной структуре, Ti₂Ni (кубическая сингония), TiNi₃ (гексагональная сингония). На рисунке 1 показана зависимость средних значений полуширин дифракционных максимумов (FWHM) от времени механической активации.

Рис. 1. Зависимость средних значений полуширин дифракционных максимумов (FWHM) от времени механической активации

Видно, что при MA до10 с FWHM изменяется не значительно, более длительное время MA приводит к резкому увеличению ширины линий, что свидетельствует о начале накопления дефектности.

48 ХVІ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

Определение параметров решётки фаз показало, что такие изменения происходят только для фазы Ti₂Ni, рис.2 а, при этом до 90 мин наводораживания, ее параметр решётки не меняется, а при более длительном времени наблюдается резкое увеличение параметра. Анализ влияния наводораживания при изменении времени MA, рис.2 б, показал, что параметр решетки Ti₂Ni до 10 с MA не изменяется, однако при большем времени MA в процессе наводораживания, он заметно увеличивается и при MA 50 с соответствует параметру фазы Ti₂NiH_{0,5} [1,15 нм из pdf2 №27-0346], а при при MA 300 с соответствует параметру фазы Ti₂NiH_{0.857} в соответствии с [12].

Заключение. С увеличением времени механической активации формируется рентгеноаморфное состояние материала. Показано, что при электрохимическом наводораживании системы Ni-Ti вблизи эквиатомного состава происходит изменение параметров только фазы Ti₂Ni, при этом ее параметр монотонно возрастает и при 300с активации соответствует стехиометрии Ti₂NiH_{0.85}.

Работа выполнена в рамках Программы III.23 РАН на 2013-2020 годы, проект III.23.2.3

СПИСОК ЛИТЕРАТУРЫ

- Xiangyu Zhao, Xiangyu Zhao et al. Ti₂Ni alloy: a potential candidate for hydrogen storage in nickel/metal hydride secondary batteries // Energy Environ. Sci. – 2010. – 3. – p. 1316–1321.
- Xifeng Li, Jun Jiang et al. Effect of hydrogen on the microstructure and superplasticity of Ti-55 alloy // International Journal of Hydrogen Energy. – № 42 – 2017. – p.6338-6349.
- Justi E W, Ewe H H, Kalberlah A W et al. Electrocatalysis in the nickel-titanium system // Energy Conv. 1970. – 10. – p. 183-187.
- Pelton A, Trépanier C Structural and diffusional effects of Hydrogen in TiNi 2009 Menlo Park CA: SMST Society 480 p. 2 – 9.
- Shan X, Payer J H and Jennings W D. Mechanism of increased performance and durability of Pd-treated metal hydriding alloys// Int. J Hydrog. Energy. – 2009. – 34. – p. 363-369.
- 6. Buchner H, Gutjahr M A, BeccuK-D et al. Zeitschrift Fur Metallkunde 1972 63 497 500.
- Yao X, Wu C, Du A et al. Metallic and Carbon Nanotube-Catalyzed Coupling of Hydrogenation in Magnesium // Chem. Soc. – 2007. – 129. – p.15650 – 15654.
- Bratanich T I, Getman O I et al. Phase transformations and change in TiNi intermetallic compound structure during destructive hydrogenation and recombination // Powder Metall. Metal Ceram. – 2006. – 45. – p. 582 – 587.
- 9. Shan X, Payer J H and Jennings W D. Mechanism of increased performance and durability of Pd-treated metal hydriding alloys // Int. J. Hydrog. Energy. 2009. 34. p. 363-369.
- 10. Burch R, Mason N B and Chem J 1979 Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 75 561 577.
- 11. Абдульменова Е.В., Ваулина О.Ю., Кульков С.Н. Влияние мехактивации на электролитическое наводораживание порошка никелида титана // Высокие технологии в современной науке и технике (BTCHT-2018):сборник научных трудов VII Междунар. научно-технической конференции молодых ученых, аспирантов и студентов. – Томск. – 2018. – с. 165-166.
- B. Luan, N. Cui, H. Zhao, H.K. Liu, S.X. Dou. Mechanism of early capacity loss of Ti₂Ni hydrogen-storage alloy electrode // Journal of Power Sources. – 55. – 1995. – p. 101-106.