	2	На водной поверхности	модуль распыления сорбента	Система, представляющая собой совокупность магистралей высокого давления (по которым происходит перемещение сорбента), распылительных насадок и пневмомотора
	3	Стационарно на суше или судне	модуль управления	Включает компрессорную установку (при помощи которой осуществляется подача сжатого воздуха в рабочие модули), пульт управления и систему емкостейшламонакопителей

Предполагаемая разработка позволяет за счет комбинации нескольких методов ликвидации значительно сократить время проведения ликвидационных мероприятий, минимизировать взаимодействие персонала с вредными загрязнениями нефти и нефтепродуктов и в значительной мере уменьшить влияние аварийного разлива на окружающую среду.

Литература

- 1. Каменщиков Ф.А., Богомольный Е.И. Удаление нефтепродуктов с водной поверхности и грунта / Каменщиков Ф.А., Богомольный Е.И. Ижевск: Научно-издательский центр "Регулярная и хаотическая динамика", 2006. 528 с
- 2. Ликвидация аварийных разливов нефти в ледовых морях / Под общ. ред. М.Н. Мансурова. М.: ООО «ИРЦ Газпром», 2004. 423 с.
- 3. Лобачев М.П. Влияние изменения вязкости нефти на характеристики ее разливов в холодной морской среде / Лобачев М.П., Сазонов К.Е. // Арктика: экология и экономика. 2014. № 1. С. 96 103.
- 4. Чухарева Н.В. Определение факторов техногенных событий при эксплуатации объектов ТЭК / Н.В. Чухарева, Ю.А. Краус, А.М. Ревазов // Neftegaz.RU. 2018. № 6. С.114 120.
- 5. Чухарева́ Н. В., Нечаев Д. А. Оптимизация технологии ликвидации аварийного разлива нефти при разрушении нефте- и продуктопроводов // Трубопроводный транспорт углеводородов: материалы II Всероссийской научнопрактической конференции, Омск, 30 Октября 2018. Омск: ОмГТУ, 2018 С. 186 192
- 6. ФЗ 116. О промышленной безопасности опасных производственных объектов (с изменениями на 7 марта 2017 года) [Электронный ресурс]. Режим доступа: http://www.consultant.ru свободный (15.07.2018).
- ISGOTT International Safety Guide for Oil Tankers and Terminals. Fifth Edition. [Электронный ресурс]. Режим доступа: http://www.idgca.org/doc/app2_290115.pdf (28.082018).
- 8. Allen A. The use of controlled burning during the Gulf of Mexico Deepwater Horizon MC-252 oil spill response/ A.A. Alan, J. Drew, J. Nere et al. // International Oil Spill Conference Proceedings (IOSC). American Petroleum Institute. 2011. Vol. 2011. № 1. pp. 194.
- 9. Dave D. Responding to Oil Spill Disasters. Spills: A Critical Review and Comparative Analysis/ D. Dave, A.E. Ghaly // American Journal of Environmental Sciences 2011. № 7 (5). pp. 423 440.
- Fay J.A. Physical Process in the Spreading of Oil Water Surface Prevention and Control of Oil Spills. API: Washington, 1970. – 347 p.

АНАЛИЗ НАПРЯЖЁННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ТЕХНОЛОГИЧЕСКИХ ТРУБОПРОВОДОВ НЕФТЕПЕРЕКАЧИВАЮЩЕЙ СТАНЦИИ С ЦЕЛЬЮ СНИЖЕНИЯ НА НИХ НАГРУЗКИ

Р.М. Павлов

Научный руководитель - доцент А.В. Рудаченко

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Особое место в системе транспорта углеводородов занимают технологические трубопроводы нефтеперекачивающих станций, характеризующиеся большим разнообразием влияющих на них силовых факторов и воздействий, что объясняет практически постоянную неопределённость уровня их технического состояния. При производстве, транспортировке труб, выполнении монтажных и ремонтных работ, возникает предварительная пластическая деформация, ускоряющая процесс деформационного старения металла. В процессе эксплуатации трубопроводов повреждение металла происходит в локальных местах конструктивных элементов с дефектами различного происхождения, а сложности, возникающие при осмотре и приборном обследовании, увеличивают вероятность возникновения отказов. Поэтому для повышения надежности технологических трубопроводов необходим точный анализ их напряжённо-деформированного состояния [2, 3].

Целью данной работы является анализ влияния статических и динамических нагрузок на напряжённодеформированное состояние технологического трубопровода, а также определение наиболее нагруженных участков трубопровода.

Объект исследования — технологический трубопровод нефтеперекачивающей станции «Раскино», проложенный в подземном исполнении в суглинистой почве с глубиной заложения до верха трубы 1,1 м. Он установлен на железобетонных опорах и подсоединён сваркой к насосному агрегату НМ — 10000-210. Материал

трубопровода — сталь 09Г2С с пределом прочности, равным 490 МПа [1]. Толщина стенки — 12 мм. Рабочее давление в трубопроводе принято 5,5 МПа. Технологический трубопровод состоит из следующих составных частей: стальная труба с наружным диаметром 1020 мм и длиной 10 м, конический сварной переход на 820 мм 1020х12, два отвода 820х12, стальная труба с наружным диаметром 820 мм. Насосный цех показан на рис. 1.

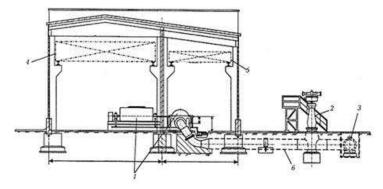


Рис. 1 Насосный цех, оборудованный насосными агрегатами НМ- 10000-210: 1— насос с электродвигателем; 2— задвижка с электроприводом; 3— клапан обратный; 4— кран мостовой ручной двухбалочный; 5— кран ручной мостовой однобалочный; 6— технологический трубопровод

Математическая модель технологического трубопровода и нагрузки, воздействующие на него, показаны на рис. 2. К статическим нагрузкам относятся: силы, действующие со стороны железобетонных опор (А); собственный вес трубопровода и изоляционного покрытия (В); давление грунта (С, D); рабочее давление в трубопроводе (Е); силы, действующие со стороны задвижки (F); вес перекачиваемой нефти (J). Динамическими нагрузками являются силы, действующие со стороны насосного оборудования на трубопровод (G, H, I).

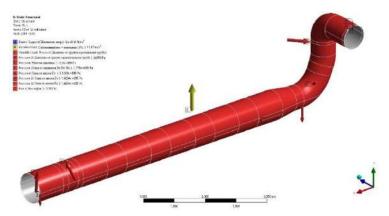


Рис. 2 Нагрузки, воздействующие на трубопровод

После учета нагрузок был произведен расчет напряжений и деформаций в программном пакете «ANSYS». Распределение эквивалентных напряжений по критерию Мизеса приведено на рис. 3 и 4. Деформации, возникающие в трубопроводе, изображены на рис. 5.

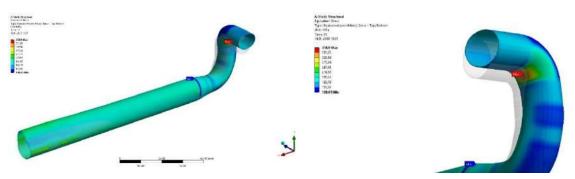


Рис. 3 Напряжения, возникающие в трубопроводе

Рис. 4 Локализация максимальных напряжений на трубопроводе

Максимальные напряжения составляют 358,9 МПа и располагаются по нижней образующей отвода, присоединенного к насосу. Также достаточно большими напряжениями в диапазоне от 250 до 280 МПа характеризуются: участок конического перехода; участок по верхней образующей, находящийся вблизи запорной арматуры. Большим деформациям подвергается вертикальный трубопровод диаметром 820 мм, особенно в

местах поворота, перемещения достигают 2,5–2,9 мм. Максимальные же перемещения 3,2 мм происходят на месте расположения задвижки по верхней образующей.

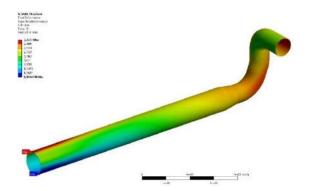


Рис. 5. Деформации, возникающие в трубопроводе

Таким образом, на основании полученных результатов при анализе напряженно-деформированного состояния технологического трубопровода в программном комплексе «ANSYS» были выявлены следующие наиболее опасные его участки: места изменения направления вертикального трубопровода диаметром 820 мм, особенно нижняя образующая отвода, ближайшего к насосу; участок расположения запорной арматуры по верхней образующей. Полученная в ходе исследования информация может служить основой для разработки технологии по снижению нагрузки с технологических трубопроводов нефтеперекачивающей станции, что в конечном итоге позволит снизить количество отказов и повысить их надежность.

Литература

- 1. ГОСТ 10705-80. Трубы стальные электросварные. Технические условия. Дата введения 1982-01-01. Ввведен 01.01.1982 г. М.: Стандартинформ, 2005. 10 с.
- 2. Рудаченко А.В., Саруев А.Л. Исследования напряжённо-деформированного состояния трубопроводов. Учебное пособие. Томск: Изд-во Томского политехнического университета, 2011. 136 с.
- 3. Технологические трубопроводы и трубопроводная арматура: учебное пособие / В.В. Филиппов. Самара: Издво Самарского государственного технического университета, 2012. 66 с.

ПОВЫШЕНИЕ РАБОТОСПОСОБНОСТИ АВАРИЙНО ОПАСНЫХ УЧАСТКОВ НЕФТЕСБОРНЫХ ТРУБОПРОВОДОВ А.С. Рыбин

Научный руководитель - доцент В.Г. Крец

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Одной из важнейших проблем эксплуатации трубопроводного транспорта является повышение работоспособного состояния его линейной части. Нефтепромысловые системы находятся под непрерывным влиянием перекачиваемых сред с высокой кислотностью, обводненностью и концентрацией химически активных ионов [1–3]. Совокупность действия данных параметров является одной из самых распространённых причин аварийных разливов сырой нефти – коррозии внутренней поверхности стенки трубопровода. В связи с тем, что активнее всего данные факторы действуют при застойных скоплениях технологической воды, пониженные участки трубопроводов относят к категории «аварийно потенциально опасных».

Коррозия нижней образующей стенки нефтепровода обусловлена скоплением жидкости в заниженных участках. Это явление происходит из-за низкой скорости потока жидкости в нефтепроводе (уравнение1):

$$v = \frac{4Q}{\pi d^2},\tag{1}$$

где Q — является объёмом общей перекачиваемой продукции, м 3 /c; d — является диаметром трубопровода за вычетом его толщины стенки, мм.

Выше приведённое значение необходимо сопоставить со скоростью потока, которое будет обеспечивать вынос скопившейся жидкости из нижней образующей трубопровода (уравнение 2):

$$W_n = 0.1 \cdot \nu_0^{0.36} \cdot (\sin \alpha_n)^{0.17} \cdot \sqrt{\frac{2g(\rho_c - \rho_{*})}{\lambda \rho_{*}}},$$
 (2)

где v0 – коэффициент кинематической вязкости, мм2/с; ρ С и ρ Ж – плотность скопления и перекачиваемой жидкости соответственно, кг/м3; λ – коэффициент гидравлического сопротивления; $\sin(\alpha_n)$ =