Секция 10

ГЕОЛОГИЯ И РАЗВЕДКА РУД РЕДКИХ И РАДИОАКТИВНЫХ ЭЛЕМЕНТОВ, СТРАТЕГИЧЕСКИХ МЕТАЛЛОВ

ЭЛЕМЕНТЫ-ПРИМЕСИ УГЛЯХ МОНГОЛИИ Б. Баттушиг

Научный руководитель - профессор С.И. Арбузов Национальный исследовательский Томский политехнический университет, г. Томск, Россия

На данный момент наметилась активизация исследований металлоносности и геохимии угольных месторождений мира, обусловленная возросшими требованиями к экологической безопасности топливной энергетики и поисками новых сырьевых источников благородных и редких металлов.

В настоящее время назрела необходимость проведения таких исследований и для угольных месторождений на территории Республики Монголия. Монголия позиционирует себя как страна с экологически чистой территорией. Но при этом на большинстве тепловых электростанций, в котельных и частных домах сжигается уголь с неустановленным содержанием потенциально опасных элементов. На многих угольных месторождениях Мон0голии на участках гипергенного окисления угля также установлены проявления и месторождения урана. Некоторые угли обогащены германием, скандием, редкоземельными элементами и могут рассматриваться как потенциальное сырье для извлечения этих ценных металлов. Другие угли обогащены мышьяком, сурьмой, цинком и другими токсичными металлами и по этой причине не могут быть использованы в качестве безопасного топлива.

В данной работе показаны результаты изучения элементов-примесей в углях разных месторождений Монголии.

Монголия обладает большими ресурсами каменного и бурого угля. По разным оценкам они составляют от 100 до 150 млрд. тонн. Распределение ресурсов по территории страны достаточно равномерное. На территории Монголии выделяют 15 угольных бассейнов, в пределах которых известно более 200 проявлений и месторождений каменного и бурого угля (Бат-Эрдэнэ, 2004, Erdenetsogt et al., 2009). Угли в целом мало- и среднесернистые, с широкими вариациями по зольности и марочному составу. Основная часть углей — энергетические, но имеются крупные запасы коксующихся углей. Добыча угля в Монголии ведется открытыми горными выработками, но крупных разрезов пока не много. В настоящее время уровень добычи превысил 15 млн.т. В настоящей работе исследованы 18 месторождений: каменного угля (возраст): Могойн-Гол, Сайхан-Ово, Баянтэг (J₁₋₂), Хундулун, Маньт, Хуренгол (Р₂), Тавантолгой (Р), Хартарвагатай, Зээгт (С₂₋₃), Хотгор (С₁₋₂) и бурого угля: Баганур, Увур-Чулуут, Тугрикнуур, Шивэ-Ово, Алаг-Толгой, Чандгантал, Адун-Чулун (К₁), Шарынгол (J₂).

Опробование и лабораторно-аналитические исследования: Всего было отобрано 550 пробы угля из исследованных месторождения. Опробование выполнено в угольных разрезах бороздовым методом с длиной борозды от 0,1 до 2,0 м., в зависимости от поставленной задачи. Лабораторные исследования включали определение зольности, влажности проб и анализ содержания 28 элементов методом инструментального нейтронноактивапционного анализа (ИНАА). ИНАА используется в качестве основного метода количественного определения элементов-примесей в углях. Анализы сделаны в ядерно-геохимической лаборатории кафедры геохимии и геоэкологии Национального исследовательского Томского политехнического университета (аналитики А.Ф. Судыко Л.В. Богутская). Лаборатория функционирует на базе исследовательского и ядерного реактора ИРТ-Т НИИ ядерной физики при ТПУ, являющегося единственным в Сибири. Лаборатория имеет аккредитацию в системе Госстандарта России Данный метод обладает рядом существенных преимуществ при анализе углистых пород и углей в сравнении с другими традиционными методами (Ruch et al., 1977; Gluskoter et al., 1977). В связи с тем, что отсутствует химическая пробоподготовка, исключаются погрешности в связи с привносом и удалением элементов совместно с реактивами. Истирание и дробление проб требуется только для того, чтобы стандартизировать процесс упаковки и взвешивания проб на этапе перед их облучением. Поскольку аналитический сигнал снимают с ядер химических элементов, то химическое и физическое состояние пробы не оказывает влияние на результаты анализа. Плотность потока тепловых нейтронов в канале облучения составляет 2*10¹³ нейтр. /(см2*с). Облучение проб проводится в течение 20 часов. Измерение выполняется с помощью многоканального амплитудного анализатора импульсов (фирма KANBERRA) с детектором из чистого германия (марка GX-3018) с разрешением 1.8 Кэв по линии Co⁶⁰ 1333 Кэв с эффективностью регистрации 30%.

Результаты анализа фиксировались в базе данных. Затем обрабатывались с использованием программ «Statistic», в электронных таблицах «EXCEL» и др. При оценке среднего содержания преимущественно рассчитывали средневзвешенное по мощности и, в случае необходимости, по зольности содержание элементов в золах углей и углях по сечениям опробования.

Угля Монголии характеризуется повышенным по отношению Кларку содержаниями большинства изученных элементов. Содержание Карбонского, Пермского и Мелового возраста отличается Юрского возраста. Общее особенностью углей Монголии является повышение содержания в ней радиоактивных элементов преимущественно урана. На территории урановый отношения около 0,5. На территории известно ураноносный угли и даже уран-угольный месторождений (Адун-Чулун). Месторождение Шарын гол высокой содержания скандия

ПРОБЛЕМЫ ГЕОЛОГИИ И ОСВОЕНИЯ НЕДР

углях юрского возраста составляет средним 12,4, а в золах углей около 100г/т, что позполяет рассматривать их как угли перспективы для создания по производства по изучению редкометалла из золы угля.

Здесь же отмечено аномальными содержаниями редко-земельных элементов. Некоторые месторождения такие как Адун-Чулун могут рассматриваться как комплексное уран-редкоземельные породы. Наличие юрских отложений повышенного содержания мышьяка и углях Монголии в целом повышенных уровни накопления урана требует проведения специализированных экологических исследований для выявление угли не приводное для энергетических использования. Опробование выполнено под руководством и непосредственном участием В.С.Машенкина.

Среднее содержание элементов-примесей в углях Монголии

Таблица

	Среднее значение, г/т					Среднее значение, г/т			
Элементы	Карбон и Перм	Юра	Мелевой	Угля Монголии	Элементы	Карбон и Перм	Юра	Мелевой	Угля Монголии
Na (%)	0,05	0,21	0,14	0,12	La	14.1	33.3	12.3	17,7
Ca (%)	0,33	0,96	1,62	0,97	Ce	33,0	77,3	25,1	39,8
Sc	3,07	12,4	4,06	5,53	Nd	11,2	69,8	6,81	20,3
Cr	7,06	48,4	24,2	22,9	Sm	2,79	6,67	1,98	3,34
Fe (%)	0,95	1,90	1,68	1,44	Eu	0,53	1,34	0,46	0,68
Co	11,8	34,2	11,5	16,6	Tb	1,00	1,35	0,32	0,81
Zn	51,7	121	56,5	90,4	Yb	1,40	4,18	1,16	1,92
As	7,64	67,5	10,6	23,4	Lu	0,23	0,62	0,16	0,29
Br	8,48	6,99	6,24	7,28	Hf	2,00	1,53	0,99	1,50
Rb	15,3	17,3	14,5	15,4	Ta	0,35	0,31	0,20	0,28
Sr	165	529	360	322	Au	0,005	0,008	0,01	0,008
Ag	0,33	0,40	0,11	0,28	Th	4,01	9,81	4,56	5,51
Sb	0,33	2,79	0,98	1,27	U	5,74	14,1	10,5	9,45
Cs	1,39	2,84	1,27	1,66	Ad ряд.	18,5	12,9	15,6	15,7
Ba	328	562	226	340					

Юра- Na, Ca и Fe ныже Кларка, но As, Co и U относительно выше Кларка. Это плохо для экологии и здоровья человека.

Меловый- Na, Ca, Fe, Nd, Sm, Eu, Tb, Lu, Hf и Та ныже, а Sr, Au и U относительно выше.

Среднее значение угля Монголии- Na, Ca, Fe и Ta не особенные, а другие элементы относительно высокие. Sc, Cr, Br, Rb, Sb, Cs, La, Nd, Sm, Eu, Yb, Lu, Hf и Au не выше чем 2 раза.

В целом угли Монголии характеризуется повышенным содержанием большинства изученных химических элементов по сравнению с угольным Кларком. Угли юрского возраста отличается от угли других возрастов более высокими уровнями накопления Sc, Cr, Zn, As, Sr, Ва и группы редко-земельных элементов отличается повышением содержанием вплоть до образования комплексных редкометаллно-угольных месторождений.

Повышение содержания урана углях Монголии согласуется общее радиогеохимические специализация территории и требует радиоэкологического контроля угля продукты.

Карбон-Пермского возраста- уголь хороший и безопасно для экологии и здоровья человека, можно использовать в ТЭС, в котельных и частных домах. Юра- богатый чем другые. Со, Zn, As, Sc, Nd и U выше Кларка. У месторождения Шарынгол относительно высокое содержание.

Меловой- уголь богатый U, Au и Sr, но безопасно для экологии.

Литература

- 1. Бямба Ж., Бат-Эрдэнэ Д. Монгольская геология и полезные ископаемые. Том 5. Улан-Батор, 2009.
- 2. Маринов Н.А., Хасин Р.А., Хурц Ч. Геология Монгольской народной республики. Том 3. Москва, 1977.
- 3. Юдович Я.Э., Кетрис М.П., Ценные элементы-примеси в углях.- Екатеринбург, 2006.
- 4. Активационный анализ. Методология и применение. Ташкент: Изд-во "ФАН", 1990. 244 с.
- 5. Erdenetsogt B.-O., Lee I., Bat-Erdene D., Jargal L. Mongolian coal-bearing basins: Geological settings, coal characteristics, distribution, and resources //Int. J. Coal Geol., 2009. V. 80, № 2, 1 .- P. 87-104
- 6. Gluskoter H.J., Ruch R.R., Miller W.G., Cahill R.A. et al. Trace elements in Coal: Occurrence and Distribution// Ill. Geol. Circ. 1977. -№ 499. 154 p.
- 7. Ruch R.R., Cahill R.A., Frost J.K, Camp L.P., Gluskoter H.J. Survey of trace elements in coals and coal-related materials by neutron activation analysis // Journal of Radioanalytical Chemistry, 1977. Vol. 38. P. 415 424.