формированием двойников. Из этого можно предположить, что в данном случае преобладает дислокационный механизм упрочнения за счет возрастания общей плотности дислокаций в пересекающихся плоскостях скольжения, а не путем образования мартенсита или карбидов.

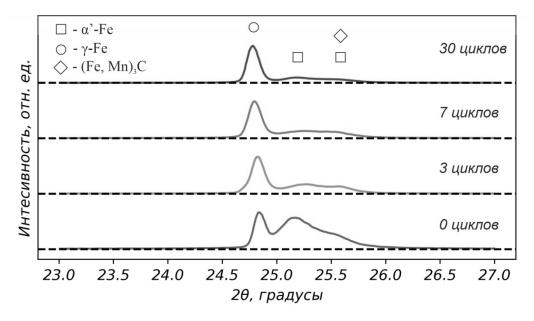


Рисунок 2 – Дифракционные картины стали 110Г13Л на различных этапах трения

Благодарность

Исследование выполнено при финансовой поддержке $P\Phi\Phi U$ и Новосибирской области в рамках научного проекта N 19-48-543022.

Список литературы

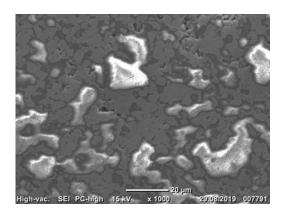
- 1. Bouaziz O. и др. High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships // Curr. Opin. Solid State Mater. Sci. 2011. Vol. 15. Pp. 141–168.
- 2. Burov V., Bataev I., Smirnov A. In-situ study of structural evolution of tribological materials using synchrotron radiation // MATEC Web Conf. 2017. Vol. 129. Pp. 2024.
- 3. Lychagin D. и др. Dry sliding of Hadfield steel single crystal oriented to deformation by slip and twinning: Deformation, wear, and acoustic emission characterization // Tribol. Int. 2018. Vol. 119. Pp. 1–18.

СОСТАВ И ХАРАКТЕРИСТИКИ СПЕЧЕННОЙ КЕРАМИКИ, СОДЕРЖАЩЕЙ НИТРИДЫ ТИТАНА И ЦИРКОНИЯ

<u>А.О. ЧУДИНОВА</u>, Т.В. КОНОВЧУК, Ю.А. МИРОВОЙ Национальный исследовательский Томский политехнический университет E-mail: <u>Chudinova.1509@mail.ru</u>

При горении нанопорошка алюминия (НПА) в воздухе происходит химическое связывание азота воздуха с образованием нитрида алюминия AlN [1]. Путем сжигания НПА в постоянном магнитном поле (1500 Э) содержание AlN в конечных продуктах горения повышалось до 83 % [2]. При сгорании смесей НПА с диоксидами титана и циркония в

воздухе в конечных продуктах стабилизируются соответствующие нитриды TiN и ZrN [3, 4]. Из двух серий продуктов сгорания смесей HПA с диоксидами были выбраны составы с максимальным содержанием нитридов (TiN -50 ± 3 %, ZrN -70 ± 4 %). Путем сжигания нескольких навесок смесей по 4,8 г наработаны конечные продукты, которые были усреднены и дезагрегированы для использования в качестве шихты для получения спеченной керамики, таблица 1.


Таблица 1 – Фазовый состав шихты по данным рентгено-фазового анализа (РФА)

Образец	Содержание TiN/ZrN, %	Содержание Al_2O_3 , %	Содержание TiO ₂ /ZrO ₂ , %
Ti - 3	50 ± 3	15 ± 2	27 ± 3
Zr-3	70 ± 4	8 ± 2	14 ± 2

Спекание проводили в графитовой пресс-форме в аргоне при нагревании до 1600 °C и выдерживании образцов при этой температуре в течение 20 мин.

После горячего прессования и полирования с использованием алмазных паст образцы керамики имели желтую окраску, характерную для нитридов титана и циркония.

На рисунке 1 представлены микрофотографии шлифов образцов керамических материалов.

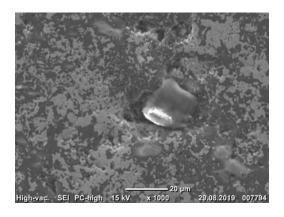


Рисунок 1 - Микрофотографии шлифов образцов спеченных керамических материалов, полученных из порошков: а) Ti-3; б) Zr-3

Согласно электронной микроскопии, в поверхности керамических образцов обнаруживаются открытые поры (темные области). Также на микрофотографиях присутствуют включения белого цвета с повышенной плотностью вещества, наиболее вероятным представляющие собой нитриды титана и циркония.

Спеченные образцы нитридсодержащей керамики также анализировали с помощью РФА. Фазовый состав керамических образцов представлен в таблице 2.

Таблица 2 - Фазовый состав керамических образцов по данным РФА

Образец	Содержание TiN/ZrN, %	Содержание Al ₂ O ₃ , %	Содержание ТіО2/ZrО2, %
Ti - 3	62,5	37,5	-
Zr-3	89,0	8,0	3,0

Измерение микротвердости проводили с использованием прибора Nano Indenter G200, который позволяет по диаграмме внедрения автоматически рассчитывать модуль упругости Е и микротвердость Н в соответствии со стандартом ISO 14577. Результаты измерений приведены в таблице 3.

T \sim	~
Таблица 3 — Характеристики получе	IULIY KENAMBUECKBY OONASIIOD
I adding $J = Mapaki cpiecinkii ildiiyac$	іных керамических образцов

Образец	Микротвердость Н, МПа	Модуль упругости Е, МПа
Ti - 3	37674	607306
Zr-3	38254	663669

Согласно полученным результатам, таблица 3, величина модуля упругости и микротвердость обоих образцов позволяет их отнести к сверхтвердым материалам. Повышенная микротвердость в сравнении с микротвердостью исходных компонентов связана с формированием прочных ионно-ковалентных связей в полученных материалах.

Выводы

- 1. Продукты сгорания в воздухе смесей нанопорошка алюминия с диоксидами титана и циркония содержат компоненты, необходимые для синтеза нитридсодержащей керамики: нитрид, оксид алюминия и остаточный диоксид. При этом более 95 % частиц продуктов сгорания имеют характерный размер менее 1 мкм.
- 2. В условиях горячего прессования (1600 °C, 30 МПа) синтезированы сверхтвердые керамические материалы с микротвердостью 37674 МПа (TiN) и 38254 МПа (ZrN), что объясняется формированием прочных ионно-ковалентных связей в материалах.

Работа выполнена при поддержке Государственного задания «Наука», проект №11.1928.2017/4.6, грант РФФИ № 19-03-00160 а2019.

Список литературы

- 1. Ильин А.П., Проскуровская Л.Т. Двухстадийное горение ультрадисперсного порошка алюминия на воздухе //ФГВ 1990. Т.26, №2. С. 71-72.
- 2. Ильин А.П., Мостовщиков А.В. Кристаллические продукты сгорания в воздухе нанопорошка алюминия при действии магнитного поля // Известия ТПУ. Физика. 3013. Т.323, №2. С.101-104.
- 3. Роот Л.О., Ильин А.П., Коновчук Т.В. К вопросу о механизме синтеза TiN, ZrN и HfN при сжигании смесей нанопорошка алюминия с диоксидами TiO₂, ZrO₂ и HfO₂ // Новые огнеупоры. 2019. №8. C.44-48.
- 4. Амелькович, Ю. А. Синтез нитридов титана и циркония сжиганием в воздухе смесей их оксидов с нанопорошком алюминия / Ю. А. Амелькович, А. П. Астанкова, Л. О. Толбанова, А. П. Ильин // Новые огнеупоры. 2007. № 11. С. 64–67.