СПЕКТРЫ ЛЮМИНЕСЦЕНЦИИ ИАГ:СЕ ПРОМЫШЛЕННЫХ ЛЮМИНОФОРОВ

<u>Г.К. АЛПЫСОВА¹</u>, Т.В. ГРЕЧКИНА², Ж.Т. КАРИПБАЕВ¹, Ш.ЧЖЕН² ¹ ЕНУ им. Л.Н. Гумилева, Нур-Султан, Казахстан ² Томский политехнический университет, Томск, Россия E-mail: gulnur-0909@mail.ru

С целью повышения эффективности люминофоров для СД проводится большое количество работ, направленных на разработку новых технологий синтеза, новых составов. Наиболее перспективными в настоящее время считаются люминофоры на основе ИАГ:Се. Их исследованию посвящено множество работ. Анализ опубликованных данных исследования спектральных характеристик заставляет обратить внимание на разница в полуширинах и положении полос люминесценции люминофоров, синтезированных в разных условиях. Нами выполнены исследования группы ИАГ:Се люминофоров разной с целью выяснения причин их различия.

Были измерены спектры люминесценции люминофоров СДЛ, ҮАG люминофоров, синтезированных в НПО «Платан» РФ и «Fultor Enterprises Co. Ltd» КНР и люминофоров синтезированных в поле потока радиации при возбуждении 450 нм.. Измерения всех спектров проводились при неизменной геометрии всей измерительной системы и постоянными режимами питания элементов системы для 24 видов люминофоров на спектрометре Avantes AvaSpec-2048L. Измерения спектров каждого люминофора при заданных режимах производились 10 раз, затем результаты измерений, положение и полуширина полосы люминесценции, обрабатывались статистически. Рассчитан коэффициент величины разброса относительно среднего значения. Составлена таблица зависимости положения полос люминесценции и их полуширины в системах ИАГ:Се. В таблице 1 приведены для примера результаты исследований спектральных характеристик некоторых люминофоров.

N⁰	Вид люминофора	λ _{мax} ,HM	ΔЕ,эВ	К
1	YAG-01	563	0,441	3,855
2	YAG-02	557	0,440	2,273
3	SDL-3500	562	0,446	4,260
4	SDL-4000	559	0,441	3,628
5	$Al_2O_3(40\%) + Y_2O_3(52\%) + Ce_2O_3(2\%) + Gd_2O_3(6\%)$ (No.31 HO)	555	0,463	2,808
6	$Al_2O_3(40\%) + Y_2O_3(52\%) + Ce_2O_3(2\%) + Gd_2O_3(6\%)$ (No 31 O)	555	0,466	2,146
7	$Al_2O_3(40\%) + Y_2O_3(52\%) + Ce_2O_3(2\%) + Gd_2O_3(6\%)$ (No.32 HO)	554	0,455	5,275
8	$Al_2O_3(40\%) + Y_2O_3(52\%) + Ce_2O_3(2\%) + Gd_2O_3(6\%)$ (No 32 O)	545	0,439	5,011
9	$Al_2O_3(43\%) + Y_2O_3(55\%) + Ce_2O_3(2\%)$ (No.33H)	556	0,451	4,435
10	$Al_2O_3(43\%) + Y_2O_3(55\%) + Ce_2O_3(2\%)$ (No.33 O)	555	0,442	2,489

Таблица1. Значения положения полос люминесценции и их полуширины

Мы полагаем, что различие в формах полос свидетельствует о том, что структура окружения центров свечения в ИАГ:Се образцах разной предыстории различается. Это очевидно является результатом разницы в технологических режимах их синтеза. Предполагается, что наблюдаемый разброс характеристик люминесценции обусловлен различием структуры нанодефектов в синтезированных в разных условиях люминофорах. Все нанодефекты в ИАГ:Се люминофорах имеют подобный элементный состав: ионы матрицы, активатора, модификатора, собственные дефекты решетки, но различное их соотношение и взаимное распределение в нанодефекте.