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Abstract. Herein, electrospun biodegradable scaffolds based on polycaprolactone (PCL), 

poly(3-hydroxybutyrate) (PHB) and polyaniline (PANi) polymers were fabricated. A calcium-

phosphate (CaP) coating was deposited on the surface of the scaffolds via an improved soaking 

process. Influence of the deposition cycles and ethanol concentration in the solution on the 

relative increase of the scaffolds weight and water contact angle (WCA) are determined. The 

characterization of the molecular and crystal structure confirmed the formation of CaP phase. 

Importantly, WCA results showed that the pristine scaffolds have the hydrophobic surface, while 

the deposition of CaP coating onto scaffolds allows to significantly improve the surface wetting 

behavior, and infiltration of the water droplets into the CaP-coated scaffolds was observed. Thus, 

the fabricated hybrid biodegradable piezoelectric scaffolds can be utilized for regenerative 

medicine. 

1. Introduction 

The porous scaffold development is of significant importance in bone tissue engineering, which allows 

to provide the functional support of damaged tissues and ensure stimulation of bone regeneration. 

Numerous studies have reported successful application of biodegradable polymers for the scaffold 

fabrication [1]. In addition, relatively recently, the possibility of piezoelectric polymers for tissues 

recovery has been investigated [2]. Piezoelectric polymers are materials that can generate electrical 

charges in response to applied mechanical stress. Electrically charged surfaces influence on cell 

behavior, e.g. cell growth, adhesion and morphology of different cell types [3]. Poly(3-hydroxybutyrate) 

(PHB) is a promising biodegradable polymer for regenerative medicine that possesses piezoelectric 

properties, but the piezoelectric response of PHB is relatively low in comparison with other piezoelectric 

polymers as PVDF or piezoceramics [4]. In order to improve the piezoelectric response of PHB 

electrospun scaffolds, conductive polyaniline (PANi) can be added to PHB solution before the scaffolds 

fabrication process [5]. Nevertheless, such scaffolds have the hydrophobic surface, thereby limiting their 

successful application in bone tissue engineering [6]. To improve these properties, calcium phosphate 

(CaP) coatings are proposed, since CaP is the major component of the inorganic phase of bone tissue 

and its presence on the surface of the scaffolds can significantly increase the bioactivity of the material, 

thus, resulting in the repair of damaged bone tissue [7]. For CaP coating deposition, a soaking was used. 
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To prepare CaP coating onto fiber scaffold surface, a simple and low cost method, such as soaking can 

be successfully utilized [8]. Since the deposition is carried out in the media, this method allows to form 

a coating on the entire surface of the porous electrospun scaffold, unlike other deposition methods, such 

as, for example, physical vapor deposition. Therefore, the aim of this study is to deposit CaP coating on 

the porous piezoelectric electrospun scaffolds and to study the influence of the coating on the scaffolds 

wettability. 

2. Materials and methods 

2.1. Materials 

Polycaprolactone (PCL, Mn = 80,000 g/mol), poly(3-hydroxybutyrate) (PHB, Mw = 300,000 g/mol) 

Polyaniline (PANi, emeraldine salt, Mw > 15,000 g/mol), calcium chloride (ZnCl2), disodium hydrogen 

phosphate (Na2PO4) and ethanol 96 % (C2H5OH) were purchased from Sigma-Aldrich, Germany. 

Chloroform (CHCl3) was purchased from EKOS-1, Russia. 

2.2.  Fabrication of electrospun scaffolds 

PCL (9 wt.%) and PHB (6 wt.%) electrospun solutions were prepared by dissolving polymers in the 

CHCl3. The solutions for composite PHB/PANi scaffolds were prepared by doping 1, 2 and 3 wt.% of 

PANi to PHB powder before being dissolved. Polymers were dissolved in an ultrasonic bath during 3 

hours. A syringe pump (Aitecs 2016, Lithuania) was used to feed the solutions into the needle tip (inner 

diameter of 0.58 mm). Electrospinning was performed at room temperature, 6.5 kV of the applied 

voltage, 1.5 mL/h injection flowrate and 600 rpm of the cylindrical collector rotation speed. 

2.3.  CaP deposition process 

The CaP formation on the scaffolds was carried out by an alternate soaking process and improved 

soaking process. The procedure in detail is reported elsewhere [8]. The calcium chloride and disodium 

hydrogen phosphate were dissolved in deionized water and in mixed solvent of ultrapure water and 

ethanol (25 v/v%), and with final concentrations of 0.5 M and 0.3 M, respectively. The ethanol was 

added to reduce the surface tension of the resulting solution. The samples were soaked into calcium 

solution and then rinsed in ultrapure water, further soaked into phosphate solution, and then rinsed, 

indicating one cycle for the soaking process. The samples were soaked for 10 minutes during the first 

cycle and 5 minutes during subsequent cycles. After the deposition process, the samples were dried in 

oven at the temperature of 50 ºC for 2 hours. 

2.4.  Characterization of the fibrous scaffolds 

The morphology of the scaffolds was characterized by scanning electron microscopy (SEM) (FEI 

Quanta 250 FEG ESEM, USA) operated at 8 kV. The average fiber diameter of the scaffolds was 

calculated by measuring 100 different fibers from each type of scaffolds using the software package, 

ImageJ. To study the phase composition and structure, X-ray diffraction was used (D8 Advance Bruker, 

Germany) with Cu Kα radiation (λ = 0.154 nm) in the 2θ range from 5° to 90° with a step size of 0.01° 

at 40 kV and 40 mA. Before XRD measurements, all samples were fixed on the tesa-film which then 

affected on the obtained patterns. The molecular bonds of the samples were studied using Fourier 

transform infrared (FTIR) spectroscopy (ALPHA FTIR Spectrometer, Germany) in the frequency range 

from 600 to 4000 cm-1 with a step size of 4 cm-1. Water contact angle (WCA) in air was measured using 

the sessile drop method via a contact angle analyzer (OCA 15 Plus Data Physics Instruments GmbH, 

Germany) at room temperature. A minimum of 5 droplets (5 μL, 1 μL/s) of ultrapure Milli-Q water were 

examined for each sample. 

3. Results and discussions 

According to SEM results (Figure 1A-E), the morphology of electrospun scaffolds had a porous fibrous 

structure. The average fiber diameter of the scaffolds varied from 2.2±0.4 μm to 5.5±1.5 μm for 
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PHB/PANi2% and PCL scaffold, respectively (Figure 1F). The WCA measurements revealed the 

hydrophobic surface (WCA>90°) for all scaffold compositions (Figure 1A-E). The addition of PANi to 

PHB scaffolds (PHB/PANi2% and PHB/PANi3%) resulted in a slight increase in the WCA. This effect 

has been also observed by Zhou et al. [9]. 

 
Figure 1. (A-E) SEM images of scaffold surface and insets of their WCA: A – PCL scaffold; B – PHB 

scaffold; C – PHB/PANi1% scaffold; D – PHB/PANi2% scaffold; E – PHB/PANi3% scaffold. (F) 

Average fiber diameters of the scaffolds 

After investigations of the pristine scaffolds, an influence of CaP deposition parameters, such as the 

number of deposition cycles and ethanol concentration, on the relative increase in mass and WCA of 

PHB scaffolds were studied (Table 1). 

Table 1. Changes in the relative increase in mass and WCA of PHB scaffolds due to varying the 

ethanol concentration and number of deposition cycles. 

Number of 

deposition cycles  

Ethanol concentration, 

v/v% 

Changes of the relative 

sample mass, % 

WCA, ° 

3 0 5.1 66.2±6.8 

5 0 9.0 50.7±6.6 

7 0 9.2 16.8±8.5 

3 25 33.6 - 

5 25 25.3 - 

7 25 48.6 - 

The increase of the number of deposition cycles led to increasing of the relative sample mass, 

probably, due to the increase of the CaP coating thickness/density or coated fibers surface area. CaP 

deposition from solutions containing 25 v/v% of ethanol also led to significantly increased relative 

sample mass. This effect can be due to the fact that the surface of the scaffolds with ethanol is better 

wetted compared to that of water. Besides, the results of WCA measurements revealed that water 

droplets immediately infiltrated into the scaffolds coated in ethanol, therefore, it was impossible to 
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correctly determine the initial WCA. However, this effect indicated that the wettability of the scaffolds 

coated with CaP in ethanol solution was improved in comparison with the scaffolds coated in water 

solution. Thus, the increase of the number of deposition cycles and the doping of ethanol lead to the 

decrease of WCA values of electrospun PHB scaffolds. Based on these results, 3 cycles of CaP 

deposition on the scaffolds from the solutions with 25 v/v% of ethanol was chosen for further studies.  

The SEM results and energy-dispersive X-ray spectroscopy (EDS) of the scaffolds with deposited 

CaP coating presented in the Figure 2. The pores between the fibers were partially filled with the 

deposited CaP coating. In some places on the surface of the scaffolds, fibers with the finest diameter 

were completely coated with the CaP coating (Figure 2C-D). In case, when initial fibrous structure of 

the scaffolds should be preserved, the number of deposition cycles to prevent the formation of such a 

thick coating on the surface of the scaffolds should be reduced. EDS spectra showed the peaks 

corresponding to calcium and phosphorus as well as peaks of sodium and chlorine, which are byproducts 

of the reaction to prepare CaP coating. A high magnification image of the CaP coating (Figure 2F) 

showed that the coating has a rough surface which is similar with the surface of biphasic CaP 

bioceramics [10]. 

 
Figure 2. SEM images and EDS spectra of the scaffolds with CaP coating: A –  PCL scaffold; B – 

PHB scaffold; C – PHB/PANi1% scaffold; D – PHB/PANi2% scaffold; E – PHB/PANi3% scaffold; F 

– high magnification of CaP coating on the PHB scaffold 

To characterize the molecular and phase composition of the prepared coating, FTIR and XRD 

analyses were carried out. FTIR spectra exhibited all the characteristic peaks of PCL and PHB polymers 

for pristine scaffolds [11]. After the addition of PANi in PHB, new peak at 743 cm-1, which attributes 

to the C-H out-of-plane bending on 1,2- aromatic rings in PANi structure, was observed [12]. In turn, 

after CaP deposition, FTIR spectra revealed the presence of typical phosphate peaks (PO4
3-) at 559 (ν4), 

959 (ν3) and 1019 (ν3) cm-1, as well as the OH- peak at 600 cm-1
 from hydroxyapatite (HA) or amorphous 

CaP [8]. 
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Figure 3. FTIR spectra of electrospun scaffolds before and after CaP coating deposition 

The recorded XRD patterns are presented in Figure 4. The main peaks assigned to PCL [13] and 

PHB (#49-2212 PDF 4+) were observed. After the coating deposition, the peaks around 12°, 21° and 

32° assigned to amorphous CaP and HA were observed [8]. Besides, XRD patterns revealed the presence 

of sodium chloride (NaCl) peak at 32° (JCPDS 5-0628) for the samples after CaP coating deposition. 

NaCl is a byproduct of the CaP production reaction, which can be removed via additional soaking. 

 
Figure 4. XRD patterns of the electrospun scaffolds before and after CaP coating deposition 

Thus, the analysis of FTIR spectra and XRD patterns confirmed the fabrication of a coating 

corresponding to biphasic CaP bioceramics. Furthermore, this coating successfully improved the 

wettability of the biodegradable piezoelectric scaffolds.  

4. Conclusion 
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Electrospun hybrid piezoelectric polymer scaffolds were coated with the CaP layer via an improved 

soaking process. It was shown that the addition of ethanol to the solutions before the deposition as well 

as increase of the number of deposition cycles from 3 to 7 allow to significantly increase the relative 

mass of the scaffold from 5 to 49 %, respectively. In addition, all the scaffolds before CaP coating 

deposition have the hydrophobic surface with WCA of 116.5-138.5°, while CaP coating allows to 

significantly improve the wettability of all studied scaffolds which allowed infiltration of water droplets 

into the scaffolds. 
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