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Abstract: Carbon nanotubes (CNTs) have record high tensile strength and Young’s modulus, which
makes them ideal for making super strong yarns, ropes, fillers for composites, solid lubricants, etc.
The mechanical properties of CNT bundles have been addressed in a number of experimental and
theoretical studies. The development of efficient computational methods for solving this problem
is an important step in the design of new CNT-based materials. In the present study, an atomistic
chain model is proposed to analyze the mechanical response of CNT bundles under plane strain
conditions. The model takes into account the tensile and bending rigidity of the CNT wall, as well
as the van der Waals interactions between walls. Due to the discrete character of the model, it is
able to describe large curvature of the CNT wall and the fracture of the walls at very high pressures,
where both of these problems are difficult to address in frame of continuum mechanics models. As an
example, equilibrium structures of CNT crystal under biaxial, strain controlled loading are obtained
and their thermal stability is analyzed. The obtained results agree well with previously reported
data. In addition, a new equilibrium structure with four SNTs in a translational cell is reported. The
model offered here can be applied with great efficiency to the analysis of the mechanical properties of
CNT bundles composed of single-walled or multi-walled CNTs under plane strain conditions due to
considerable reduction in the number of degrees of freedom.

Keywords: carbon nanotube bundle; plane strain conditions; lateral compression; equilibrium
structure; thermal stability; chain model

PACS: 61.48.De

1. Introduction

There exist a huge number of carbon polymorphs, including a wide class of sp2 structures such
as fullerenes, carbon nanotubes (CNT), and graphene. Due to the action of relatively weak van der
Waals forces, a great variety of secondary structures can be formed, and some of them can have
a long-range order, for example, fullerite crystal composed of fullerenes [1–3], graphite made of
graphene layers [4,5], and crystals made of CNTs [6–8]. Such crystalline structures are of great interest
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since they have properties not exhibited by isolated structural elements [1–8]. Here, we focus on
mechanical response of CNT bundles.

Various experimental techniques have been developed to produce CNT forests [9–12].
Mechanical applications of CNTs include ropes [7,13], fibers [14–18], polymer-matrix and metal-matrix
composites [19–21], solid lubricants [21,22], etc. In all these applications, superior mechanical
properties of CNTs such as tensile strength in the range from 11 to 63 GPa, tensile Young’s modulus
of the order of 1.0 to 1.3 TPa, and high deformability up to ultimate fracture strain of about 10% are
used [23–26]. In addition, they are lightweight, flexible, have high thermal and electrical conductivity,
and these properties are useful in a number of applications [27–30].

Not only tension [7,13–18] and compression of vertically aligned CNT brushes and forests [31–38],
but also lateral compression of isolated CNT or CNT bundles [39–43] is of interest, and the latter loading
scheme has been studied less thoroughly than the former ones. Drawing, winding, micromechanical
rolling, and shear pressing were used to produce horizontally aligned CNT bundles from vertically
aligned CNT arrays [44–47]. Experimental and computational approaches used for evaluation of
mechanical properties of CNTs have been outlined in the review [48]. Carbon nanotube bundles are
linear elastic under hydrostatic pressure up to 1.5 GPa at room temperature; the volume compressibility,
measured by in situ synchrotron x-ray diffraction, is 0.024 GPa−1; the deformation of the trigonal
nanotube lattice under hydrostatic pressure is reversible up to 4 GPa [49]. Using X-ray diffraction and
Raman scattering techniques, it has been shown that CNT bundles under non-hydrostatic pressure are
not reversible for pressures beyond 5 GPa [50].

Indentation experiments are widely used to assess mechanical properties of vertically aligned CNT
forests and brushes [32–38]. In particular, the Young’s modulus of 200 nm thick brush is about 17 GPa
and the critical buckling stress can be estimated as 0.3 GPa at a load of 0.02 mN [32]. Carbon nanotube
forests composed of CNTs of 2.2 mm height and 50 nm diameter have shown an elastic compressive
modulus of 2.1 MPa as measured at initial loading condition and 20.8 MPa as measured after the
plateau region [33].

Computational studies on the mechanical properties of nanomaterials become increasingly
important because they speed up and reduce the cost of research and design. On the other hand,
it is a tremendous challenge to predict nonlinear mechanical behaviors of nanomaterials by full
atomic molecular dynamics method due to the huge computational cost, particularly for CNT bundles.
Development of new computational approaches capable of modeling mechanical response at different
scales is a very important task.

Mesoscopic modeling of phase transformations and mechanical deformation mechanism of
CNT forest has been addressed in [51,52]. It has been shown that under compression along the
tubes a low-density phase composed of vertically aligned CNT bundles transforms into a dense
phase with horizontal alignment of CNTs. Carbon nanotubes subject to large deformations
obtain different morphological patterns that can be simulated using a continuum shell model [53].
Transverse mechanical properties of CNTs have been studied in [8]. Nonlocal beam, plate, and shell
theories employed in modeling of the mechanical properties of nanoscale structures are described
in the review [54]. The applicability of the continuum beam model in the mechanics of CNT has
been discussed in [55]. It has been shown that the rigidity of CNT crystal does not decrease with
increasing tube diameter [6]. Isolated CNT of diameter above a threshold value can have two stable
configurations—circular and collapsed [56–58]. In a recent experimental and molecular dynamics
study, the irreversible transformation of triple-wall carbon nanotube bundles have been analyzed at
pressure up 72 GPa and temperature up to 2400 K [39]. The irreversible transformation threshold
pressure has been found to be in between 60 GPa and 72 GPa. Nonlinear coarse-grained stretching and
bending potentials for CNTs have been developed to enable simulation of the mechanical behaviors
and failure mechanism of the CNT bundles [59].

In spite of the fact that a number of computational methods have been developed for the analysis
of mechanical properties of CNT forests, there is always a need to increase the efficiency and accuracy
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of simulation methods. Continuum mechanics is a powerful and effective tool to successfully describe
macroscopic parameters of CNT bundles, but it has some limitations. For example, thermal fluctuations
of CNTs and their fracture can be more adequately modelled in frame of atomistic models. On the
other hand, full atomic models, as mentioned above, are very demanding on computational resources.
One possible compromise is to use atomistic models for particular deformation modes, when the
number of degrees of freedom can be substantially reduced.

In this study, in order to reduce the number of degrees of freedom, a full atomic model of CNT
bundles under plane strain conditions is substituted by the chain model developed in the work [60] and
successfully used to study structure and properties of secondary structures such as folds and scrolls
of carbon nanoribbons [60–64] and dynamics of surface ripplocations on a graphite substrate [65].
For simplicity, here we will only consider the case of a bundle composed of single-walled CNTs of
equal diameter, but the model can be applied to the cases of CNTs of different diameter, multi-walled
CNTs, and include graphene scrolls and cylindrically crumpled graphene.

2. Materials and Methods

The computational model employed in this study is schematically shown in Figure 1.
The nanotube bundle is aligned along the z-axis and CNTs of equal diameter create in cross-section
a triangular lattice; they are numbered by the indices i = 1, ..., I and j = 1, ..., J (the case of I = J = 2
is shown). Only zigzag CNTs are considered for simplicity. The carbon atoms move on the (x, y)
plane and each atom represents a rigid row of atoms oriented normal to the (x, y) plane. Within
each CNT, carbon atoms are numbered by the index n = 1, ..., N, anti-clockwise, starting from the
atom with maximal x-coordinate. Thus, total number of atoms in the computational cell is I × J × N.
Atomic positions are defined by the radius-vectors rijn = (xijn, yijn). Periodic boundary conditions
are imposed.

Figure 1. Schematic of the computational cell that includes I × J carbon nanotubes (CNTs) (I = J = 2
in this case) numbered by the indices i = 1, ..., I and j = 1, ..., J. Carbon nanotubes in cross-section
create a triangular lattice. Within each CNT, carbon atoms are numbered by the index n = 1, ..., N
anti-clockwise, starting from the atom with maximal x-coordinate. Atoms move on the (x, y) plane.
Each atom represents a row of atoms oriented normal to the (x, y) plane, which moves as a rigid body.
The computational cell has the shape of a parallelogram with the sides I × A and J × A, where A is the
distance between centers of neighboring CNTs. Periodic boundary conditions are used.

Let us describe the model geometry. The interatomic distance in graphene is equal to ρ = 1.418 Å.
The distance between neighboring atomic rows oriented along the armchair direction in graphene is
then a = ρ

√
3/2 = 1.228 Å, and this is the distance between atoms in the chain model (see Figure 1).

Carbon nanotube diameter is D = a/ sin(π/N). Let d be the shortest distance between CNT walls,
then the distance between centers of neighboring CNTs is A = D + d. The sides of the computational
cell in the form of parallelogram are I × A and J × A. In our simulations, we consider CNTs with
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N = 30 having diameter D = 11.75 Å and equilibrium value of d = 3.088 Å, which can be compared
to the interplanar distance of graphite equal to 3.3 Å.

Carbon nanotube bundle under uniform lateral compression can be efficiently described by the
Hamiltonian of the chain model [60]

H = K + UB + UA + UVdW, (1)

which includes kinetic energy

K =
M
2

I

∑
i=1

J

∑
j=1

N

∑
n=1

(ẋ2
ijn + ẏ2

ijn), (2)

energy of valence bonds

UB =
I

∑
i=1

J

∑
j=1

N

∑
n=1

V(|rijn+1 − rijn|), where V(r) =
k
2
(r− a)2, (3)

energy of valence angles

UA =
I

∑
i=1

J

∑
j=1

N

∑
n=1

P(θijn), where P(θ) = ε[cos(θ) + 1], (4)

and energy of van der Waals interactions

UVdW =
I

∑
i=1

J

∑
j=1

N

∑
n=1

I

∑
i′=1

J

∑
j′=1

N

∑
n′=1

W(|rijn − ri′ j′n′ |), where |n′ − n| > 3 when i = i′, j = j′. (5)

In Equation (2) M is the carbon atom mass, which is 12 amu. In our simulations, time is measured
in picoseconds, energy in eV, and distance in angstrom. In these units M = 12× 1.0364× 10−4. As it
can be seen from Equation (3), harmonic potential with stiffness k is used to model deformation of
the valence bonds. In order to reproduce the longitudinal stiffness of graphene sheet one should take
k = 405 N/m [60], which in the units adopted here gives k = 25.279.

In Equation (4), cosine of the angle between two valence bonds, rijn − rijn−1 and rijn+1 − rijn, is
calculated as

cos(θijn) =
(rijn − rijn−1, rijn+1 − rijn)

|rijn − rijn−1||rijn+1 − rijn|
. (6)

Bending rigidity of graphene sheet is well reproduced with the value of the potential parameter
ε = 3.50 eV [60].

The van der Waals interactions in Equation (5) are given by the Lennard–Jones potential (5,11) [65]

W(r) =
ε

6

[
5
(σ

r

)11
− 11

(σ

r

)5]
, (7)

with the interaction energy ε = 0.00166 eV and the equilibrium bond length σ = 3.61 Å.
Further information on the chain model and on the procedure of fitting its parameters can be

found in [60,65].
As it has been mentioned, a CNT of sufficiently large diameter can have either cylindrical or

collapsed equilibrium configuration. In the present study we consider CNTs of relatively small
diameter (N = 30, D = 11.75 Å) with only circular stable state when unloaded.

The aim of this study is to evaluate mechanical response of CNT bundle to lateral biaxial
compression under plane strain condition with εxx = εyy ≤ 0 and εxy = 0. Firstly, equilibrium
configurations are found at zero temperature and then, their stability at room temperature (T = 300 K)
is analyzed.
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Perturbation–relaxation molecular dynamics simulations are done at zero temperature in order to
find equilibrium structures at different values of applied strain and T = 0 K. The simulation protocol
is as follows. The compressive strain is applied by increments ∆εxx = ∆εyy = −0.0025 starting from
zero strain. After each increment, the positions of atoms are perturbed by adding small random
displacements to their x- and y-coordinates. The displacements are uniformly distributed in the range
from −10−6 to 10−6 Å. Then the equilibrium structure is obtained by minimizing potential energy of
the system with the help of the gradient method. Energy minimization stops when the absolute value
of the maximal force acting on atoms becomes smaller than 10−10 eV/Å.

Different computational cell sizes were considered. Calculations with 24× 24 = 576 CNTs have
revealed that structures with period doubling are formed as a result of instability at particular value
of compressive strain. Such structures can be analyzed with smaller cell size and most of the results
reported here are for the cell that includes 6× 6 = 36 CNTs.

Classical molecular dynamics was used to assess stability of equilibrium structures with respect
to thermal fluctuations at T = 300 K. Temperature in our simulations is defined as

T =
M

2I JNkB(t2 − t1)

∫ t2

t1

I

∑
i=1

J

∑
j=1

N

∑
n=1

(ṙijn, ṙijn)dτ , (8)

where kB = 8.617× 10−5 eV·K−1 is the Boltzmann constant and the averaging time is t2 − t1=10 ps.
For a given temperature T, the initial velocities of atoms are assigned according to the Maxwellian
distribution. Random initial displacements of atoms are assigned in a way to increase the potential
energy of the system by the amount equal to the kinetic energy.

Equations of atomic motion that stem from the Hamiltonian Equation (1) are integrated
numerically with the help of the Stormer method of order six with the time step of 0.1 fs. The
structure is considered to be stable if no structure transformations are observed within 100 ps.
Structure transformations can be very well seen on the time dependencies of kinetic and potential
energies during our simulations with NVE ensemble (constant number of particles, volume, and total
energy). When structure changes, kinetic energy increases in expense of potential energy.

3. Results

In this section the equilibrium structures of CNT bundle under lateral compression are reported
and their properties are analyzed. First, the potential energy and stress as functions of strain are
given and then the change of CNT geometry with strain is presented. Finally, stability of equilibrium
structures at T = 300 K is analyzed.

3.1. Energy and Stress in the System

We start with the analysis of potential energy per atom calculated for equilibrium structures at
different values of compressive strain. In Figure 2a, total potential energy per atom is shown as a
function of strain, while in Figure 2b–d this energy is decomposed into three parts: the energy of van
der Waals interactions, the energy of valence bonds, and the energy of valence angles, respectively.
Total potential energy in the range of strain below 3.75% increases with strain quadratically but for
larger strain a linear increase of energy with strain can be observed. These two regimes are separated in
Figure 2 by the vertical dashed line. This qualitative change in the behavior of potential energy is due
to structural changes observed in the system for strain exceeding the critical value of 3.75%. Below this
critical strain, all CNTs in the system have the same cross-section in the form of six-fold flattened
cylinders (see Figure 3a), while above the critical value the CNTs become elliptic. Two different
structures with elliptic CNTs can form, Structure I with the translational cell doubled in one direction
(see Figure 3b) and Structure II with the translational cell doubled in two directions (see Figure 4).
In Figure 2 results for Structure I are shown by red circles and for Structure II by black triangles.
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Figure 2. (a–d) Potential energy per atom and its parts as the functions of biaxial compressive strain.
(e–g) Components of stress tensor as the functions of biaxial compressive strain. Results for Structure
I [see Figure 3b] are shown by red circles and for Structure II (see Figure 4) by black triangles.
These structures with elliptic nanotubes are stable for 0.0375 < |εxx| = |εyy| < 0.09. For smaller
values of compressive strain one has six-fold flattened nanotubes [see Figure 3a]. For compressive
strain above 9% collapsed CNTs appear in the system (this regime is not studied here). The first critical
value of strain is shown by the vertical dashed lines.

From Figure 2a–d it is clear that below the critical strain the potential energy of all three kinds
increase with strain. At the critical value of strain just before the structure transformation one has
UVdW = 0.0041 eV, UB = 0.0056 eV, and UA = 0.0029 eV. The largest increase of energy is observed
for the valence bonds because main mechanism of lattice deformation in this regime is contraction of
valence bonds. The smallest contribution to the energy increase comes from the valence angles, since
they do not change much during transformation of CNT cylindrical shape into six-fold flattened shape.
This picture drastically changes for compressive strain larger than 3.75% when CNTs become elliptic.
The deformation of structure in this regime is mainly due to change of valence angles and UA increases
rapidly with strain while other two components of energy decrease with strain. The decrease of UVdW
with strain in this regime is explained by formation of new van der Waals bonds with increasing
ellipticity of CNTs. At strain of 8.75%, UA is already one order of magnitude larger than two other
components of energy. Note that both Structure I and Structure II have very close energies, and only for
strain above 7% is UVdW in Structure I slightly higher than in Structure II. Repetition of the simulations
with different random atomic displacements has revealed that Structure I and Structure II are formed at
the transition point with nearly equal probability, and this is because they have practically same energy.

Variation of stress components σxx, σyy, and σxy with strain is shown in Figure 2e–g, respectively.
For strain below the critical level, compressive stress increases so that σxx = σyy and σxy = 0. This is
because the structure with six-fold symmetry is elastically isotropic (see Figure 3a). For strain above
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the critical level, deformation occurs at nearly constant pressure p = −(σxx + σyy)/2. Both structures
become anisotropic. In particular, Structure I is orthotropic with |σxx| > |σyy| and σxy = 0. On the
other hand, Structure II has general anisotropy with |σxx| < |σyy| and σxy 6= 0.

Figure 3. Equilibrium structures of CNT bundle observed at compressive strain of (a) 3.5% and (b)
5.5%. In (a) the displacements of atoms are multiplied by factor 4 to better reveal the six-fold flattened
cylindrical shape of CNTs. In (b) the CNT cross-section is elliptic. Translation cells of the structures are
shown by red lines. In (a) the cell includes single CNT, while in (b) period doubles in one direction.
The latter structure is referred to as Structure I.

Figure 4. Equilibrium structures of CNT bundle observed at compressive strain of (a) 5.5% and (b)
8.5%. Translation cells of the structures are shown by red lines. Here, period doubles in two directions
and this structure is called Structure II.

3.2. Geometry of CNTs

To better understand the relation between structure and macroscopic parameters of the system,
let us quantify the geometry of CNTs in different structures. For each CNT we calculate its minimal
and maximal diameters, Dmin and Dmax, and the angle α between the x-axis and the maximal diameter,
as shown in Figure 3b.

In Figure 5a,b the ratio Dmin/Dmax is shown for Structures I and II, respectively. In Figure 5c,d
the angle α is shown for Structures I and II, respectively.

Since the translation cell of Structure I includes two CNTs (numbered as 1 and 2 in Figure 3b), in
Figure 5a,c, two different values of Dmin/Dmax and α can be seen for strain above the critical value.
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The translation cell of Structure II includes four CNTs (numbered as 1 to 4 in Figure 4) and hence,
in Figure 5b,d, four different values of Dmin/Dmax and α can be seen for strain above the critical value.
For strain below the critical value, all curves merge into one since translation cell includes single CNT,
see Figure 3a.
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Figure 5. (a,b) The minimal to maximal diameter ratio for CNTs in Structures I and II, respectively,
as functions of compressive strain. (c,d) Orientation angle of CNTs in Structures I and II, respectively,
as functions of compressive strain. Numbers near the curves link them to the CNTs in translation cells
of Structures I and II, as shown in Figures 3b and 4. The critical value of strain is shown by the vertical
dashed lines.

From Figure 5a, one can see that in Structure I the ellipticity of SNTs gradually increases with
increasing compressive strain. At the value of strain 8.75%, Dmin/Dmax is smaller than 0.5. Recall
that further increase of strain above 9% results in the formation of collapsed CNTs with non-convex
cross-section, but we do not analyze such structures here. As Figure 5c suggests, the orientation
of elliptic CNTs in Structure I is practically strain-independent. Carbon nanotubes 1 and 2 have
orientation angles α = 35 and 145 deg., with the difference equal to 110 deg.

Structure II demonstrates more complicated evolution with strain.
Two different regimes can be distinguished looking at Figure 5b. For strain between 4% and

6.5%, three CNTs (1, 2, and 4) in the translation cell have nearly the same ellipticity, while CNT 3 is
less elliptic (see Figure 4a). For larger strain, CNTs 2 and 4 become more elliptic than CNTs 1 and 3
(see Figure 4b). Orientation angles of CNTs also change with strain (see Figure 5d). At 8.75% strain,
CNT 4 is nearly aligned with the y-axis (α is close to 90 deg.), while CNT 2 with the x-axis (α is close to
180 deg.). Carbon nanotubes 1 and 3 have angles of about 50 and 130 deg., with a difference of about
80 deg.

3.3. Temperature Effect

The stability of all three types of equilibrium structures reported in Section 3.1 with respect to
thermal oscillations is investigated here at temperature T = 300 K.
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It was found that the structure with all identical CNTs (see Figure 3a) is stable at room temperature
up to compressive strain of about 4.0%, which slightly exceeds the stability range of this structure at 0 K
(3.75% strain). At a strain of 4.0% and temperature 300 K, the cross-sectional shapes of CNTs fluctuate
in time but on average all CNTs remain the same, preserving the high symmetry of the structure.
The pressure-induced phase transition from high-symmetry structure to the structures with period
doubling in one or two directions is the second-order phase transition. This is justified by the absence
of the jumps in macroscopic properties at the transition point (3.75% compressive strain), see Figure 2.
Low-symmetry Structures I and II under heating transform into high-symmetry structures, if the
compressive strain is not too high.

Within the range of compressive strain from 4.1% to 6%, Structures I and II are stable at 300 K;
they are preserved within the simulation time of 100 ps and no jumps of macroscopic parameters are
observed.

Both Structures I and II become unstable at 300 K for compressive strain exceeding 6%.
The instability of Structure I is illustrated in Figure 6 for compressive strain of 7%. In (a,b), one can
see the time evolution of kinetic energy per atom and components of compressive stress, respectively.
Until t = 10 ps, kinetic energy oscillates near the value of 0.0259 eV, which corresponds to 300 K,
but then it starts to increase in expense of the potential energy (total energy is conserved in the system).
Pressure drops at the transition point from 175 to 140 MPa. Jumps in the macroscopic parameters of
the system indicate that this phase transition is of the first order. In (c), a snapshot of the structure is
presented at t = 20 ps. One can see that the long-range crystal order is lost and an irregular structure
that includes collapsed CNTs with non-convex cross-section is formed.
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Figure 6. Instability of Structure I at compressive strain of 7% and temperature T = 300 K. (a,b) Time
evolution of kinetic energy per atom and components of compressive stress, respectively. Structure
transformation begins at t ≈ 10 ps, which results in the change of macroscopic parameters. (c) Snapshot
of structure at t = 20 ps. As a result of structure transformation, collapsed, non-convex CNTs appear in
the system.

4. Discussion

The chain model introduced in the works [60,65] was developed here to enable simulation of
the mechanical properties of CNT bundles under plane strain conditions. The model was applied
to the analysis of structure transformations and mechanical properties of CNT crystal subjected to
biaxial lateral compression. Carbon nanotube diameter is relatively small, so that the collapsed shape
is unstable in the absence of external forces.

Three different crystalline structures stable at zero temperature have been found. For compressive
strain |εxx| = |εyy| < 3.75%, primitive translational cell of the crystal includes single CNT. In the range
of compressive strain from 4% to 9%, two phases of nearly the same potential energy were found, one
has two and the other one has four CNTs in a primitive translational cell. These structures are referred
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to as Structure I and II, respectively. Pressure-induced phase transition from the high-symmetry
structure to the Structures I or II is of the second order because no jumps of macroscopic properties are
seen in Figure 2 at the transition point at strain of 3.75%.

Thermal fluctuations increase the stability range of the high-symmetry structure with single CNT
in the primitive translational cell. At 300 K, this structure is stable up to 4.0% compressive strain,
while at 0 K the stability threshold is at 3.75% strain. The transformation of low-symmetry phase
into high-symmetry phase under an increase in temperature is typical for the second-order phase
transitions [66,67].

Thermal fluctuations reduce the stability range of Structures I and II. At zero temperature, they
are stable from 3.75% to 8.75% of compressive strain, while at room temperature the stability range
of compressive strain is from 4.1% to 6%. The transition above 6% strain is of the first order, it is
accompanied by the jumps in macroscopic parameters (see Figure 6a,b), when crystalline structure
with a long-range order transforms into an irregular structure (see Figure 6c).

As for the mechanical properties of CNT bundles under lateral compression, the transition
to the structures with elliptic CNTs results in a considerable drop in rigidity of the bundle.
Indeed, the deformation of the structure in the range from 3.75% to 9% compressive strain is at
nearly constant pressure, see Figure 2e,f. Unloading of the system from any strain below 9% has shown
that the structure is non-linear elastic with no hysteresis effect. Also note that the high-symmetry
structure is elastically isotropic, while Structures I and II are anisotropic since for them σxx 6= σyy,
see Figure 2e,f.

The results reported here are in agreement with the results of full atomic and continuum mechanics
modelling [6,8,39,51,53,54,56–58], but they were obtained at a very low computational cost. For
example, full atomic modelling with the same accuracy would require the use of the periodic boundary
conditions in the z direction with at least one zigzag carbon chain within the translational cell. The
calculation of interatomic forces between atoms within the considered cell and its translation images
would require additional summation, which is absent in the chain model since it has been done in
derivation of the effective potentials between the rigid atomic chains oriented along the z axis. For this
reason, the chain model gives at least one order of magnitude acceleration of computations with the
same accuracy, as compared to full atomic modelling.

Recall that the harmonic, unbreakable potential is used in this work to describe the valence
interactions between carbon atoms, which is sufficient for modelling structure transformations at
relatively small pressure considered here. In order to model irreversible deformation of CNT bundles
under very high pressure, see, e.g., the work [39], the harmonic potential Equation (3) should be
substituted with the breakable anharmonic potential, such as Morse potential [68].

In future works, it is important to study the effect of CNT diameter since new effects can be
expected for larger diameter when collapsed isolated CNT is stable. Crystals composed of such CNTs
can demonstrate irreversible plastic deformation with very peculiar mechanisms of plasticity. As for
the applications, CNT bundles under lateral compression can show hysteresis effect, when it acts as an
elastic damper [69], in a similar way to the compressed, vertically aligned CNT brushes [31].

The chain model proposed here can be readily adjusted to a number of newly found
graphene-analogous 2D nanomaterials [70] by fitting model parameters to the results of first-principle
or molecular dynamics simulations.

Consideration of bundles composed of different CNTs or multi-walled CNTs is straightforward.
Substitution of the harmonic valence bond potential in Equation (3) with a suitable breakable
anharmonic potential will enable the simulation of structure transformations in the CNT bundle
under very high pressure.
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5. Conclusions

We thus conclude that the chain model can be applied with a high numerical efficiency and
sufficient accuracy to the analysis of structural and mechanical properties of CNT bundles under plane
strain conditions.

The atomistic chain model proposed here, unlike continuum mechanics models, is able to describe
high curvature of collapsed CNT wall and fracture of the walls under high pressure.

The chain model proposed here can be readily applied to the cases of CNTs of different
diameter, collapsed CNTs, multi-walled CNTs, and even include graphene scrolls and cylindrically
crumpled graphene.
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