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The (1þ 1)-dimensional gauge model of two complex self-interacting scalar fields that interact with
each other through an Abelian gauge field and a quartic scalar interaction is considered. It is shown that
the model has nontopological soliton solutions describing soliton systems consisting of two Q-ball
components possessing opposite electric charges. The two Q-ball components interact with each other
through the Abelian gauge field and the quartic scalar interaction. The interplay between the attractive
electromagnetic interaction and the repulsive quartic interaction leads to the existence of symmetric and
nonsymmetric soliton systems. Properties of these systems are investigated by analytical and numerical
methods. The symmetric soliton system exists in the whole allowable interval of the phase frequency,
whereas the nonsymmetric soliton system exists only in some interior subinterval. Despite the fact that
these soliton systems are electrically neutral, they nevertheless possess nonzero electric fields in their
interiors. It is found that the nonsymmetric soliton system is more preferable from the viewpoint of energy
than the symmetric one. Both symmetric and nonsymmetric soliton systems are stable against decay into
massive scalar bosons.
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I. INTRODUCTION

There are many field models possessing global sym-
metries and corresponding conserved Noether charges that
admit the existence of nontopological solitons [1,2]. The
determining property of a nontopological soliton is that it is
an extremum of the energy functional at a fixed value of the
Noether charge. This feature of nontopological solitons
leads to the characteristic time dependence ∝ exp ð−iωtÞ of
their fields. This nontrivial time dependence of the soliton’s
field allows one to avoid severe restrictions of Derrick’s
theorem [3], so scalar nontopological solitons can exist in
any number of spatial dimensions.
The simplest nontopological soliton, proposed in

Ref. [4] and known as a Q-ball [5], has been found in a
model of a complex scalar field possessing a global Uð1Þ
symmetry. Q-balls can also exist in scalar field models
possessing a global non-Abelian symmetry [6,7]. They are
present [8,9] in supersymmetric extensions of the Standard
Model having flat directions in the interaction potential of
scalar fields. Such Q-balls are of great interest to cosmo-
logical models describing the evolution of the early
Universe [10–15].

There are also other types of nontopological solitons in
global-symmetric field models. The most known of them
is the nontopological soliton of the Friedberg-Lee-Sirlin
model [16]. The model consists of two interacting scalar
fields, one of which is real and the other of which is
complex. It possesses a global Uð1Þ symmetry and a
renormalizable interaction potential. Another example is
the nontopological soliton in the model of a massive self-
interacting complex vector field [17].
In all of the examples given above, the existence of

nontopological solitons is due to a global invariance of the
corresponding Lagrangians, so the Noether charge of such
solitons cannot be a source of a gauge field. At the same
time, nontopological solitons also exist in field models
possessing a local gauge invariance, both Abelian [18–26]
and non-Abelian [27–29]. The nontopological solitons
[18–26,29] possess a long-range gauge electric field, so
Noether charges of these solitons are proportional to their
electric charges. In particular, electrically charged Q-balls
[25,26] exist in models with a scalar self-interaction
potential resulting from gauge-mediated supersymmetry
breaking and may play an important role in cosmology.
However, all these electrically charged nontopological
solitons are three-dimensional ones. This is because any
one-dimensional or two-dimensional field configuration
with a nonzero electric charge possesses infinite energy, as
follows from Gauss’s law and the expression for the electric
field energy density. Nevertheless, there are electrically
neutral low-dimensional soliton systems that have a non-
zero electric field in their interiors. In particular, the
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two-dimensional soliton systems consisting of vortex and
Q-ball components interacting through an Abelian gauge
field have been described in Refs. [30,31].
In the present paper, we research the (1þ 1)-dimensional

gauge model of two complex self-interacting scalar fields
interacting with each other through an Abelian gauge field
and a quartic scalar interaction. In particular, it is found that
symmetric and nonsymmetric soliton systems exist in the
model. The soliton systems consist of two Q-ball compo-
nents having opposite electric charges. The soliton systems
are electrically neutral but nevertheless possess nonzero
electric fields in their interiors. The paper is structured as
follows. In Sec. II, we describe briefly the Lagrangian and
the field equations of the model under consideration. By
means of the Hamiltonian formalism and the Lagrange
multipliers method, the time dependence is established for
the soliton system’s fields. Then, we give the ansatz used
for solving the model’s field equations and establish the
basic relation for the nontopological soliton system. In
Sec. III, we derive the system of nonlinear differential
equations for the ansatz functions and the expressions for
the electromagnetic current density and the energy density
in terms of these functions. Then, some general properties
of the soliton system are established, its asymptotic proper-
ties are researched, and the virial relation for the soliton
system is derived. In Sec. IV, we study properties of the
soliton system in the thick-wall and thin-wall regimes and
establish its stability against decay into free massive scalar
bosons. In Sec. V, we briefly describe the procedure for
numerical solving of a boundary value problem and discuss
possible types of soliton solutions of the problem. The
dependences of the energy and the Noether charge on the
phase frequency are presented for both (symmetric and
nonsymmetric) types of the soliton solutions. Then, we
show the dependences of the symmetric soliton system’s
energy and the energy difference between the symmetric
and nonsymmetric soliton systems on the Noether charge.
After that, we present the numerical results for the ansatz
functions, the energy density, the electric charge density,
and the electric field strength for the symmetric and
nonsymmetric soliton systems.
Throughout the paper, the natural units c ¼ 1, ℏ ¼ 1

are used.

II. LAGRANGIAN AND THE FIELD EQUATIONS

The (1þ 1)-dimensional gauge model we are interested
in is described by the Lagrangian density

L ¼ −
1

4
FμνFμν þ ðDμϕÞ�Dμϕþ ðDμχÞ�Dμχ

− VðjϕjÞ − UðjχjÞ −Wðjϕj; jχjÞ: ð1Þ

It describes the two complex scalar fields ϕ and χ that
minimally interact with the Abelian gauge field Aμ through
the covariant derivatives:

Dμϕ ¼ ∂μϕþ ieAμϕ; Dμχ ¼ ∂μχ þ iqAμχ: ð2Þ

The scalar fields interact with each other and self-interact.
The self-interaction potentials of the scalar fields have the
form

VðjϕjÞ ¼ m2
ϕjϕj2 −

gϕ
2
jϕj4 þ hϕ

3
jϕj6; ð3Þ

UðjχjÞ ¼ m2
χ jχj2 −

gχ
2
jχj4 þ hχ

3
jχj6; ð4Þ

whereas the interaction potential is

Wðjϕj; jχjÞ ¼ λjϕj2jχj2: ð5Þ

We suppose that the self-interaction potentials V and U
admit the existence of usual nongauged nontopological
solitons (Q-balls) formed from the scalar fields ϕ and χ,
respectively. We also suppose that the potentials V and U
possess global minima at ϕ ¼ 0 and χ ¼ 0, respectively.
Then, the parameters of the potentials satisfy the condition

m2
i hi
g2i

>
3

16
; ð6Þ

where the index i ¼ ðϕ; χÞ.
The Lagrangian (1) is invariant under the local gauge

transformations:

ϕðx; tÞ → ϕ0ðx; tÞ ¼ exp ð−ieΛðx; tÞÞϕðx; tÞ; ð7aÞ

χðx; tÞ → χ0ðx; tÞ ¼ exp ð−iqΛðx; tÞÞχðx; tÞ; ð7bÞ

Aμðx; tÞ → A0
μðx; tÞ ¼ Aμðx; tÞ þ ∂μΛðx; tÞ: ð7cÞ

At the same time, it is also invariant under the two
independent global gauge transformations:

ϕðx; tÞ → ϕ0ðx; tÞ ¼ exp ð−iαÞϕðx; tÞ; ð8aÞ

χðx; tÞ → χ0ðx; tÞ ¼ exp ð−iβÞχðx; tÞ: ð8bÞ

The Noether currents corresponding to transformations (8)
are written as

jμϕ ¼ i½ϕ�Dμϕ − ðDμϕÞ�ϕ�; ð9aÞ

jμχ ¼ i½χ�Dμχ − ðDμχÞ�χ�: ð9bÞ

The presence of the two separately conserved Noether
chargesQϕ ¼ R∞

−∞ j0ϕdx andQχ ¼
R∞
−∞ j0χdx is the result of

the structure of the interaction potential W and the neutral-
ity of the Abelian gauge field Aμ.
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The field equations of the model are obtained by varying
the action S ¼ R R∞

−∞ Ldxdt in the corresponding fields,

DμDμϕþ ∂V
∂jϕj

ϕ

2jϕj þ
∂W
∂jϕj

ϕ

2jϕj ¼ 0; ð10Þ

DμDμχ þ ∂U
∂jχj

χ

2jχj þ
∂W
∂jχj

χ

2jχj ¼ 0; ð11Þ

∂μFμν ¼ jν; ð12Þ

where the electromagnet current jν is written in terms of
two Noether currents (9),

jν ¼ ejνϕ þ qjνχ : ð13Þ

The symmetric energy-momentum tensor of the model is
written as

Tμν ¼ −FμλFν
λ þ 1

4
gμνFλρFλρ

þ ðDμϕÞ�Dνϕþ ðDνϕÞ�Dμϕ

þ ðDμχÞ�Dνχ þ ðDνχÞ�Dμχ

− gμν½ðDμϕÞ�Dμϕþ ðDμχÞ�Dμχ

−VðjϕjÞ −UðjχjÞ −Wðjϕj; jχjÞ�; ð14Þ

so we have the expression for the energy density

T00 ¼ E ¼ 1

2
E2
x þ ðDtϕÞ�Dtϕþ ðDxϕÞ�Dxϕ

þ ðDtχÞ�Dtχ þ ðDxχÞ�Dxχ

þ VðjϕjÞ þUðjχjÞ þWðjϕj; jχjÞ; ð15Þ

where Ex ¼F01¼ ∂tA1−∂xA0 is the electric field strength.
Field equation (12) with ν ¼ 0 is Gauss’s law. It can be

written in the form

∂xEx ¼ j0: ð16Þ

Integrating Eq. (16) over x ∈ ð−∞;∞Þ, we obtain the
relation

lim
x→∞

Exðx; tÞ − lim
x→−∞

Exðx; tÞ ¼ Q; ð17Þ

where Q ¼ R∞
−∞ j0dx is the electric charge of a field

configuration. Further, from Eq. (15), it follows that the
electric field’s energy is

EðEÞ ¼ 1

2

Z∞
−∞

E2
xdx: ð18Þ

We see from Eq. (18) that the necessary condition for the
finiteness of EðEÞ is limx→�∞Exðx; tÞ ¼ 0. Then, from

Eq. (17), it follows that the electric charge of a finite
energy field configuration vanishes. Thus, we conclude that
in (1þ 1) dimensions any field configuration possessing
finite energy must have zero electric charge. Note that in
(2þ 1) dimensions any field configuration with finite
energy also has zero electric charge unless the Chern-
Simons term is present in the Lagrangian. In (3þ 1)
dimensions, however, there are electrically charged
objects with finite energy (e.g., electrically charged Q-ball
or dyon).
By analogywith nontopological solitons,wewant to find a

solution of model (1) that is an extremum of the energy
functional E ¼ R

∞
−∞ Edx at fixed values of the Noether

charges Qϕ ¼ R
∞
−∞ j0ϕdx and Qχ ¼

R
∞
−∞ j0χdx. Such a sol-

ution is an unconditional extremum of the functional

F ¼
Z∞
−∞

Edx − ωϕ

Z∞
−∞

j0ϕdx − ωχ

Z∞
−∞

j0χdx

¼ E − ωϕQϕ − ωχQχ ; ð19Þ

where ωϕ and ωχ are the Lagrange multipliers. However, a
finite energy field configuration must be electrically neutral,
so we have the relation

Q ¼ eQϕ þ qQχ ¼ 0: ð20Þ

We see that the Noether charges Qϕ and Qχ are not
independent, so Eq. (19) can be rewritten in the two
equivalent forms

F ¼ E − ωQχ ¼ E − ω̃Qϕ; ð21Þ
where ω ¼ ωχ − qe−1ωϕ and ω̃ ¼ ωϕ − eq−1ωχ are new
Lagrange multipliers. Thus, the functional F can be
expressed in terms of either Qχ or Qϕ. In the present paper,
we shall use the first variant: F ¼ E − ωQχ .
To determine the time dependence of the soliton sol-

ution, we will use the Hamiltonian formalism. We adopt the
axial gauge in which the spatial component of the gauge
potential vanishes: Ax ¼ A1 ¼ 0. In this case, the gauge
model is described in terms of the eight canonically
conjugated fields: ϕ, πϕ ¼ ðD0ϕÞ�, ϕ�, πϕ� ¼ D0ϕ, χ,
πχ ¼ ðD0χÞ�, χ�, and πχ� ¼ D0χ. Then, the Hamiltonian
density has the form

H ¼ πϕ∂tϕþ πϕ�∂tϕ
� þ πχ∂tχ þ πχ�∂tχ

� − L

¼ −
1

2
ð∂xA0Þ2 þ πϕπϕ� þ πχπχ� þ ∂xϕ

�∂xϕþ ∂xχ
�∂xχ

þ ieA0fϕ�πϕ� − ϕπϕg þ iqA0fχ�πχ� − χπχg
þ VðjϕjÞ þUðjχjÞ þWðjϕj; jχjÞ; ð22Þ

where the time component A0 is determined in terms of the
canonically conjugated fields by Gauss’s law,
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∂2
xA0 þ iefϕ�πϕ� − ϕπϕg þ iqfχ�πχ� − χπχg ¼ 0: ð23Þ

Note that energy density (15) does not coincide with
Hamiltonian density (22):

H − E¼−ð∂xA0Þ2 þ ieA0fϕ�πϕ� − ϕπϕg
þ iqA0fχ�πχ� − χπχg: ð24Þ

However, the integral of Eq. (24) over the space dimension
vanishes for field configurations possessing finite energy and
satisfying Gauss’s law (23). So, for such configurations,

E ¼
Z∞
−∞

Edx ¼ H ¼
Z∞
−∞

Hdx: ð25Þ

It can be shown that in the adopted gauge the field
equations (10) and (11) can be rewritten in the Hamiltonian
form:

∂tϕ ¼ δH
δπϕ

¼ δE
δπϕ

; ∂tπϕ ¼ −
δH
δϕ

¼ −
δE
δϕ

; ð26Þ

∂tχ ¼ δH
δπχ

¼ δE
δπχ

; ∂tπχ ¼ −
δH
δχ

¼ −
δE
δχ

: ð27Þ

Further, the first variation of the functional F vanishes in a
neighborhood of the soliton solution,

δF ¼ δE − ωδQχ ¼ 0; ð28Þ
where the first variation of the Noether charge Qχ can be
expressed in terms of the canonically conjugated fields:

δQχ ¼ −i
Z

∞

−∞
ðπχδχ þ χδπχ − c:c:Þdx: ð29Þ

From Eqs. (26)–(29), we obtain the Hamilton field
equations

∂tχ ¼ δE
δπχ

¼ ω
δQχ

δπχ
¼ −iωχ; ð30Þ

∂tχ
� ¼ δE

δπχ�
¼ ω

δQχ

δπχ�
¼ iωχ; ð31Þ

while time derivatives of the other model’s fields are equal
to zero. Thus, in the adopted gauge Ax ¼ 0, only the scalar
field χ has the nontrivial time dependence, whereas the
model’s fields ϕ and A0 do not depend on time:

ϕðx; tÞ ¼ fðxÞ; ð32aÞ

χðx; tÞ ¼ sðxÞ exp ð−iωtÞ; ð32bÞ

Aμðx; tÞ ¼ ða0ðxÞ; 0Þ: ð32cÞ

Note that, instead of the expression F ¼ E − ωQχ , we may
use the equivalent one, F ¼ E − ω̃Qϕ. It can be shown that
in this case the time dependences of the fields are obtained
from those of Eqs. (32) by local gauge transformation (7)
with the parameter Λ ¼ −q−1ωt.
From extremum condition (28), it follows that the soliton

solution satisfies the important relation

dE
dQχ

¼ ω; ð33Þ

where the Lagrange multiplier ω is understood as some
function of the Noether charge Qχ . Note that, unlike
Eqs. (32), relation (33) is gauge invariant. Just as in the
case of nongauged nontopological solitons [1], Eq. (33)
plays the primary role in the determining of properties of
the gauged nontopological soliton system.

III. SOME PROPERTIES OF THE SOLUTION

In Eqs. (32), fðxÞ and sðxÞ are some complex functions
of the real argument x. Substituting Eqs. (32) into field
equations (10)–(12), we obtain the system of ordinary
nonlinear differential equations for the functions a0ðxÞ,
fðxÞ, and sðxÞ:

a000ðxÞ − 2ðe2jfðxÞj2 þ q2jsðxÞj2Þa0ðxÞ þ 2qωjsðxÞj2 ¼ 0;

ð34Þ

f00ðxÞ − ðm2
ϕ − e2a0ðxÞ2ÞfðxÞ

þ ðgϕjfðxÞj2 − hϕjfðxÞj4 − λjsðxÞj2ÞfðxÞ ¼ 0; ð35Þ

s00ðxÞ − ðm2
χ − ðω − qa0ðxÞÞ2ÞsðxÞ

þ ðgχ jsðxÞj2 − hχ jsðxÞj4 − λjfðxÞj2ÞsðxÞ ¼ 0: ð36Þ

From Eq. (35), it follows that the real and imaginary parts of
fðxÞ satisfy the same differential equation, whereas Eq. (36)
leads us to the same conclusion for the function sðxÞ. This in
turn means that the functions fðxÞ and sðxÞ can bewritten as
fðxÞ ¼ exp ðiαÞjfðxÞj and sðxÞ ¼ exp ðiβÞjsðxÞj, where α
and β are real constant phases. These phases, however, can be
gauged away by global gauge transformations (8). Thus, we
can suppose without loss of generality that fðxÞ and sðxÞ are
real functions of x.
Substituting Eqs. (32) into Eqs. (13) and (15), we obtain

the electromagnetic current density and the energy density
in terms of the real functions a0ðxÞ, fðxÞ, and sðxÞ:

jμ ¼ ð2qωs2 − 2ðq2s2 þ e2f2Þa0; 0Þ; ð37Þ

E ¼ a00
2

2
þ f02 þ s02 þ ðω − qa0Þ2s2 þ e2a02f2

þ VðfÞ þ UðsÞ þWðf; sÞ: ð38Þ
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The finiteness of the soliton system’s energy E ¼ R
∞
−∞ Edx

leads to the following boundary conditions for the func-
tions a0ðxÞ, fðxÞ, and sðxÞ:

a00ðxÞ →
x→−∞

0; a00ðxÞ →x→∞
0; ð39aÞ

fðxÞ →
x→−∞

0; fðxÞ →
x→∞

0; ð39bÞ

sðxÞ →
x→−∞

0; sðxÞ →
x→∞

0: ð39cÞ

Let us discuss some general properties of the soliton
system. The invariance of the Lagrangian (1) under the
charge conjugation leads to the invariance of system
(34)–(36) under the discrete transformation

ω; a0; f; s → −ω;−a0; f; s: ð40Þ

From Eqs. (37), (38), and (40), it follows that the energy E
is an even function of ω, whereas the Noether charges Qϕ

and Qχ are odd functions of ω:

Eð−ωÞ ¼ EðωÞ; ð41Þ

Qϕ;χð−ωÞ ¼ −Qϕ;χðωÞ: ð42Þ

The Lagrangian (1) is also invariant under the parity
transformation. It follows that system (34)–(36) is invariant
under the space inversion: x → −x. It follows that the
existence of a solution a0ðxÞ, fðxÞ, and sðxÞ of system
(34)–(36) also means the existence of a solution a0ð−xÞ,
fð−xÞ, and sð−xÞ. This fact, however, does not mean that
a0ðxÞ, fðxÞ, and sðxÞ must be even functions of x. Indeed,
we shall see later that system (34)–(36) together with
boundary conditions (39) has nonsymmetric soliton
solutions.
Substituting the power expansions for the functions

a0ðxÞ, fðxÞ, and sðxÞ into Eqs. (34)–(36), we obtain the
asymptotic form of the solution as x → 0,

a0ðxÞ ¼ a0 þ a1xþ
a2
2!

x2 þOðx3Þ; ð43aÞ

f0ðxÞ ¼ f0 þ f1xþ
f2
2!

x2 þOðx3Þ; ð43bÞ

s0ðxÞ ¼ s0 þ s1xþ
s2
2!
x2 þOðx3Þ; ð43cÞ

where the next-to-leading coefficients

a2 ¼ 2a0ðe2f20 þ q2s20Þ − 2qωs20; ð44aÞ

f2 ¼ f0ðm2
ϕ − gϕf20 þ hϕf40 − e2a20 þ λs20Þ; ð44bÞ

s2 ¼ s0ðm2
χ − ðω − qa0Þ2 − gχs20 þ hχs40þλf20Þ ð44cÞ

are determined in terms of the three leading coefficients a0,
f0, and s0 and the model’s parameters. The next coef-
ficients an, fn, and sn, where n ¼ 3; 4; 5;…, are deter-
mined by the six leading coefficients a0, f0, s0, a1, f1, and
s1 and the model’s parameters. It can be easily shown that
if the coefficients a1, f1, and s1 vanish all the other
coefficients with an odd n also vanish, and we have an
even solution of Eqs. (34)–(36).
Linearization of Eqs. (34)–(36) at large x together with

corresponding boundary conditions (39) leads us to the
asymptotic form of the solution as x → �∞,

fðxÞ ∼ f�∞ exp ð∓ m̃ϕ�xÞ; ð45aÞ

sðxÞ ∼ s�∞ exp ð∓ m̃χ�xÞ; ð45bÞ

a0ðxÞ ∼ a�∞ þ a�∞
e2f2�∞
2m̃2

ϕ�
× exp ð∓ 2m̃ϕ�xÞ − ðω − qa�∞Þ

×
qs2�∞
2m̃2

χ�
exp ð∓ 2m̃χ�xÞ; ð45cÞ

where the mass parameters m̃ϕ� and m̃χ� are defined by the
relations

m̃2
ϕ� ¼ m2

ϕ − e2a2�∞; ð46Þ

m̃2
χ� ¼ m2

χ − ðω − qa�∞Þ2: ð47Þ

From Eqs. (46) and (47), we obtain the boundaries on the
absolute values of a0ð�∞Þ ¼ a�∞ and ω:

ja0ð�∞Þj < mϕ

e
; jmχ −

q
e
mϕj < jωj < mχ þ

q
e
mϕ:

ð48Þ

Weshall see later that the upper boundaries for ja0ð�∞Þj and
jωj are attained in the thick-wall regime,whereas theminimal
values of jωj, which we are able to reach numerically in the
thin-wall regime, are always more than jmχ − qe−1mϕj.
From Eqs. (43)–(45), it follows that there may be two

types of solutions: the symmetric one for which
fð−xÞ ¼ fðxÞ, sð−xÞ ¼ sðxÞ, and a0ð−xÞ ¼ a0ðxÞ and
the nonsymmetric one that does not possess this property.
For a symmetric solution, the series coefficients an, fn,
and sn with an odd n vanish, and so in Eqs. (45)–(47), the
asymptotic parameters corresponding to x → −∞ are equal
to those corresponding to x → ∞.
If the values of the model’s parameters are fixed, then the

behavior of a nonsymmetric solution fðxÞ, sðxÞ, and a0ðxÞ
as x → 0 is determined by the six parameters a0, f0, s0, a1,
f1, and s1 in Eqs. (43). The behavior of the nonsymmetric
solution as x → �∞ is also determined by the six
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parameters in Eqs. (45), namely, a−∞, f−∞, and s−∞ as
x → −∞ and a∞, f∞, and s∞ as x → ∞. Thus, we have 12
free parameters in all. The continuity condition for fðxÞ,
sðxÞ, and a0ðxÞ and their derivatives f0ðxÞ, s0ðxÞ, and a00ðxÞ
at arbitrary x < 0 give us six equations. A similar condition
at arbitrary x > 0 provides us with another six equations.
Therefore, we shall have 12 equations for determining the
12 parameters. According to Ref. [32], this fact is an
argument in favor of the existence of the nonsymmetric
solution for the boundary value problem in some range of
the model’s parameters. Of course, similar arguments can
also be applied to a symmetric solution.
Any solution of field equations (10)–(12) is an extremum

of the action S ¼ R R
∞
−∞ Ldxdt. At the same time, the

Lagrangian density (1) does not depend on time in the case
of field configurations (32). It follows that any solution of
Eqs. (34)–(36), satisfying boundary conditions (39), is an
extremum of the Lagrangian L ¼ R

∞
−∞ Ldx. Let a0ðxÞ,

fðxÞ, and sðxÞ be a solution of system (34)–(36), satisfying
boundary conditions (39). After the scale transformation of
the solution’s argument x → λx, the Lagrangian L becomes
a function of the scale parameter λ. The function LðλÞ has
an extremum at λ ¼ 1, so its derivative with respect to λ
vanishes at this point: dL=dλjλ¼1 ¼ 0. From this equation,
we obtain the virial relation for the soliton system,

EðEÞ þ EðPÞ − EðGÞ − EðTÞ ¼ 0; ð49Þ

where

EðEÞ ¼
Z∞
−∞

a00
2

2
dx ð50Þ

is the electric field’s energy,

EðGÞ ¼
Z∞
−∞

ðf02 þ s02Þdx ð51Þ

is the gradient part of the soliton’s energy,

EðTÞ ¼
Z∞
−∞

ððω − qa0Þ2s2 þ e2a02f2Þdx ð52Þ

is the kinetic part of the soliton’s energy, and

EðPÞ ¼
Z∞
−∞

ðVðfÞ þ UðsÞ þWðf; sÞÞdx ð53Þ

is the potential part of the soliton’s energy.
The obvious equality E ¼ EðEÞ þ EðTÞ þ EðGÞ þ EðPÞ

and virial relation (49) lead to the following representations
for the soliton system’s energy:

E ¼ 2ðEðTÞ þ EðGÞÞ; ð54Þ

E ¼ 2ðEðPÞ þ EðEÞÞ: ð55Þ

Integrating the term a00
2=2 in Eq. (38) by parts and using

Eqs. (34), (37), and (39), we obtain one more representation
for the energy,

E ¼ 1

2
ωQχ þ EðGÞ þ EðPÞ; ð56Þ

which, in turn, leads to the relation between the Noether
charge Qχ , the electric field’s energy EðEÞ, and the kinetic
energy EðTÞ:

ωQχ ¼ 2ðEðEÞ þ EðTÞÞ: ð57Þ

If the electromagnetic coupling constants of the complex
scalar fields ϕ and χ are the same (e ¼ q), then the
renormalizable interaction ϕ2χ�2 þ ϕ�2χ2 may be added
to interaction potential (5). In this case, the Lagrangian (1)
is still invariant under local gauge transformations (7), but it
is not invariant under two independent global gauge
transformations (8), so the electric charges of ϕ and χ
fields are not conserved separately. Thus, the model will
possess only one conserved Noether charge QN , which is
proportional to the total electric charge Q of a field
configuration: QN ¼ e−1Q. Using the functional F ¼ E −
ΩQN and the Hamiltonian formalism, we come to the
following time dependence of the fields: ϕðx; tÞ ¼
fðxÞ exp ð−iΩtÞ, χðx; tÞ ¼ sðxÞ exp ð−iΩtÞ, and A0ðx; tÞ ¼
a0ðxÞ. Note that, unlike Eqs. (32), both scalar fields ϕ and χ
have identical time dependence. In this case, Gauss’s law
can be written as

ξ00ðxÞ − 2e2ðf2ðxÞ þ s2ðxÞÞξðxÞ ¼ 0; ð58Þ

where ξðxÞ ¼ Ω − ea0ðxÞ. For EðEÞ to be finite, ξðxÞ must
tend to constants as x → �∞, so ξ0ðxÞ !

x→�∞
0, and the

electric charge Q vanishes. But it is easily shown that any
solution of Eq. (58) [with the exception of the trivial one
ξðxÞ ¼ 0, which corresponds to the zero electric field]
cannot satisfy these boundary conditions because of the
positivity of the coefficient 2e2ðf2ðxÞ þ s2ðxÞÞ. Indeed, if
ξð−∞Þ > 0 and ξ0ð−∞Þ ¼ 0 or ξðþ∞Þ > 0 and
ξ0ðþ∞Þ ¼ 0, then ξðxÞ is concave for all x, while if
ξð−∞Þ < 0 and ξ0ð−∞Þ ¼ 0 or ξðþ∞Þ < 0 and
ξ0ðþ∞Þ ¼ 0, then the function ξðxÞ is convex for all x.
In any case, one of the boundary conditions ξ0ðxÞ !

x→�∞
0

cannot be satisfied, so the electric charge Q is different
from zero, and the electric field’s energy EðEÞ is infinite.
Hence, there is no nontopological soliton system with a
nonzero electric field if the term ϕ2χ�2 þ ϕ�2χ2 is added to
interaction potential (5).
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IV. THICK-WALL AND THIN-WALL REGIMES
OF THE SOLITON SYSTEM

In this section, we research properties of the symmetric
soliton solution in two extreme regimes. In the thick-wall
regime, the mass parameters m̃ϕ and m̃χ tend to zero,
leading to a spatial spreading of the soliton system. This
fact and Eqs. (46) and (47) lead to the limiting values of the
potential a0ð∞Þ and the phase frequency ω in the thick-
wall regime:

ja0ð∞Þj ¼mϕ

e
; ωtk¼ sgnða0ð∞ÞÞ

�
mχ þ

q
e
mϕ

�
: ð59Þ

In the thick-wall regime, where m̃2
ϕ ≈ m̃2

χ → 0, we under-
take the scale transformation of the fields and the x
coordinate,

fðxÞ ¼ Δf̄ðx̄Þ; sðxÞ ¼ Δs̄ðx̄Þ;

a0ðxÞ ¼
mϕ

e
þ Δ2

m2
ϕ

ā0ðx̄Þ; x ¼ Δ−1x̄; ð60Þ

where the scale factor Δ is defined as

Δ2 ¼ m2
ϕ − e2a20ð∞Þ ≈m2

χ − ðω − qa0ð∞ÞÞ2
≈ κ2ðω2

tk − ω2Þ: ð61Þ

In Eq. (61), the factor κ is expressed in terms of the scalar
particles’ masses and the gauge coupling constants:

κ ¼ e

�
mϕmχ

ðemϕ þ qmχÞðemχ þ qmϕÞ
�1

2

: ð62Þ

Let us consider the functional F ¼ E − ωQχ . From
Eq. (33), it follows that this functional is related to the
energy functional by means of Legendre transformation:
FðωÞ ¼ EðQχÞ − ωQχ . On field configuration (60), the
functional F can be written as

FðωÞ ¼ Δ3F̄ þOðΔ5Þ; ð63Þ

where the functional F̄ does not depend on ω:

F̄ ¼
Z∞
−∞

�
f̄0ðx̄Þ2 þ s̄0ðx̄Þ2 þ f̄ðx̄Þ2 þ s̄ðx̄Þ2

−
gϕ
2
f̄ðx̄Þ4 − gχ

2
s̄ðx̄Þ4 þ λf̄ðx̄Þ2s̄ðx̄Þ2

�
dx̄: ð64Þ

In the thick-wall regime, the phase frequency ω tends to the
limiting value ωtk, so the parameter Δ vanishes, and it is
possible to ignore the higher-order terms in Δ in Eq. (63).
Using known properties of Legendre transformation, we
obtain sequentially

QχðωÞ ¼ −
dFðωÞ
dω

¼ 3F̄κ3ωðω2
tk − ω2Þ12; ð65Þ

EðωÞ ¼ FðωÞ − ω
dFðωÞ
dω

¼ F̄κ3ð2ω2 þ ω2
tkÞðω2

tk − ω2Þ12: ð66Þ

From Eqs. (65) and (66), we obtain the dependence of
the energy E on the Noether charge Qχ in the thick-wall
regime:

EðQχÞ ¼ ωtkQχ −
1

54

1

F̄2κ6ω3
tk

Q3
χ þOðQ5

χÞ: ð67Þ

We see from Eqs. (20), (65)–(67) that the energy E and
the Noether charges Qϕ and Qχ of the soliton system tend
to zero in the thick-wall regime. Further, Eq. (67), basic
relation (33), and the inequality ω2 < ω2

tk lead to the
conclusion that EðQχÞ < ωtkQχ for all values of Qχ .
From Eqs. (20), (42), and (59), it follows that ωtkQχ is
equal tomϕjQϕj þmχ jQχ j, which, in turn, is the rest energy
of the neutral plane-wave configuration formed from the
charged scalar ϕ and χ particles. Hence, the symmetric
soliton system is stable against decay into the scalar ϕ and χ
particles.
The second extremal regime of the symmetric soliton

system is the thin-wall regime in which the absolute value
of the phase frequency tends to some minimum value ωtn.
In the thin-wall regime, the spatial size of the soliton system
increases indefinitely, with the result that its energy E and
Noether chargesQϕ andQχ also tend to infinity. In the thin-
wall regime, when the spatial size of the soliton system
L → ∞, the gradient operator gives a factor proportional to
L−1. Therefore, we can ignore electric field’s energy (50)
and gradient energy (51) in comparison with kinetic energy
(52) and potential energy (53). Then, from Eq. (49), it
follows that the limiting relation

lim
ω→ωtn

EðTÞ

EðPÞ ¼ 1 ð68Þ

holds in the thin-wall regime and, as a consequence,

lim
ω→ωtn

2EðTÞ

E
¼ lim

ω→ωtn

2EðPÞ

E
¼ 1: ð69Þ

Further, electric charge density (37) tends to zero in the
thin-wall regime, since the soliton system’s electric charge
is strictly equal to zero, whereas its spatial size tends to
infinity. Then, using Eqs. (37), (52), and (69), we obtain the
limiting relation

ONE-DIMENSIONAL SOLITON SYSTEM OF GAUGED … PHYS. REV. D 99, 065011 (2019)

065011-7



lim
ω→ωtn

2EðTÞ

Qχ
¼ lim

ω→ωtn

E
Qχ

¼ ωtn; ð70Þ

which is consistent with basic relation (33) and Eq. (57).

V. NUMERICAL RESULTS

The system of differential equations (34)–(36) with
boundary conditions (39) is the mixed boundary value
problem on the infinite interval x ∈ ð−∞;∞Þ. This boun-
dary value problem can be solved only by numerical
methods. In this paper, the boundary value problem was
solved using the MAPLE package [33] by the method of
finite differences and subsequent Newtonian iterations.
Equations (33), (20), and (49) were used to check the
correctness of numerical solutions.
Let us discuss possible types of solutions of the

boundary value problem. If the quartic coupling constant
λ and the electromagnetic coupling constants e and q are set
equal to zero, then the Lagrangian (1) will describe the
system of two self-interacting complex scalar fields that,
however, do not interact with each other. In this case, the
boundary value problem has the solution describing a
system of two noninteracting nongauged one-dimensional
Q-balls. Generally, these two Q-balls have different shapes
and can be at an arbitrary distance from each other, so the
solution will not be symmetric. However, the situation
changes when the electromagnetic interaction is turned on.
In this case, from Eq. (20), it follows that the electric
charges of two Q-ball components are equal in magnitude
but opposite in sign. It is important to note that the electric
charges of two gauged Q-balls are conserved separately
owing to the neutrality of the Abelian gauge field. Since the
opposite electric charges attract each other, the initially
nonsymmetric soliton system transitions into a symmetric
one. Now, we turn on the quartic interaction between the
two complex scalar fields ϕ and χ by letting the coupling
constant λ be some positive value. From Eq. (5), it follows
that the energy of the quartic interaction increases with the
increase of overlap between the Q-ball components of
the soliton system and is negligible at large separations
between the Q-ball components. Such a behavior of the
quartic interaction corresponds to a short-range repulsive
force between the Q-ball components, while the electro-
magnetic long-range attractive force results in the confine-
ment of the Q-ball components. One would expect that for
a sufficiently large positive coupling constant λ the action
of these opposite forces leads to an equilibrium nonsym-
metric soliton configuration, which is the solution of
boundary value problem (34)–(36), and (39). Indeed, we
shall see later that such a nonsymmetric soliton solution
really exists.
The system of differential equations (34)–(36) depends

on the ten dimensional parameters: ω, e, q, mϕ, mχ , gϕ, gχ ,
hϕ, hχ , and λ. It is readily seen, however, that the

dimensionless functions a0ðxÞ, fðxÞ, and sðxÞ can depend
only on nine independent dimensionless combinations of
these parameters. Therefore, without loss of generality, we
can choose the mass mϕ of the scalar ϕ particle as the
energy unit. We consider a general case in which the
corresponding dimensionless parameters are values of
the same order: ẽ ¼ e=mϕ ¼ 0.2, q̃ ¼ q=mϕ ¼ 0.2, m̃χ ¼
mχ=mϕ ¼ 1.25, g̃ϕ ¼ gϕ=m2

ϕ ¼ 1, g̃χ ¼ gχ=m2
ϕ ¼ 1.5, h̃ϕ ¼

hϕ=m2
ϕ ¼ 0.22, h̃χ ¼ hχ=m2

ϕ ¼ 0.31, and λ̃ ¼ λ=m2
ϕ ¼ 0.2.

Figures 1 and 2 present the dependences of the soliton’s
dimensionless energy Ẽ ¼ m−1

ϕ E and Noether charge Qχ

on the dimensionless phase frequency ω̃ ¼ m−1
ϕ ω.

1.6 1.8 2.0 2.2
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10

15

20

25

30

FIG. 1. The dependence of the dimensionless soliton energy
Ẽ ¼ m−1

ϕ E on the dimensionless phase frequency ω̃ ¼ m−1
ϕ ω.

The solid curve corresponds to the symmetric soliton system, and
the dashed curve corresponds to the nonsymmetric one.
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15

FIG. 2. The dependence of the soliton Noether chargeQχ on the
dimensionless phase frequency ω̃ ¼ m−1

ϕ ω. The solid curve
corresponds to the symmetric soliton system, and the dashed
curve corresponds to the nonsymmetric one.
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The most striking feature of Figs. 1 and 2 is the coexistence
of the symmetric and nonsymmetric soliton solutions.
Indeed, it has been found numerically that the symmetric
soliton solution exists in the range from the minimum value
ω̃min ¼ 1.4079916, which we managed to reach by numeri-
cal methods, to the maximum value ω̃tk ¼ 2.25. On the
contrary, the nonsymmetric soliton solution exists only in
the interval from the left bifurcation point ω̃lb ¼ 1.409 to
the right one ω̃rb ¼ 1.601. We also see that the two types of
curves have intersection points at ω̃i1 and ω̃i2 in Figs. 1 and
2, respectively. These intersection points are slightly differ-
ent: ω̃i1 ¼ 1.4504025, whereas ω̃i2 ¼ 1.4504280. In each
of the figures, the solid and dashed curves bound the two
regions, which connect at the intersection points. Using
Eq. (33), it can easily be shown that the areas of these
regions are equal to each other, so we have the relationsZ

ω̃rb

ω̃lb

½Qχaðω̃Þ −Qχsðω̃Þ�dω̃ ¼ 0 ð71Þ

and Z
ω̃rb

ω̃lb

½Ẽaðω̃Þ − Ẽsðω̃Þ�dω̃ ¼ 0; ð72Þ

which were checked numerically.
When ω̃ tends to its minimal value ω̃tn, the symmetric

soliton system goes into the thin-wall regime. In this
regime, the energy Ẽ, the Noether charges Qχ and Qϕ,
and the effective spatial size L of the symmetric soliton
system increase indefinitely. In particular, we found
numerically that Ẽ, Qχ , Qϕ, and L increase logarithmically
as ω̃ → ω̃tn,

Ẽ ∼ −ω̃tnB ln ðω̃ − ω̃tnÞ; ð73Þ

Qχ ∼ −B ln ðω̃ − ω̃tnÞ; ð74Þ

Qϕ ∼ B
q
e
ln ðω̃ − ω̃tnÞ; ð75Þ

L ∼ −C ln ðω̃ − ω̃tnÞ; ð76Þ

where B andC are some positive constants, and the limiting
thin-wall phase frequency ω̃tn ¼ 1.407 986 9. Note that this
numerical estimation of ω̃tn is slightly less than the minimal
value ω̃min ¼ 1.407 991 6, which was reached by numerical
methods. Note also that in the thin-wall regime the behavior
of E, Qχ , Qϕ, and L is similar to that of the corresponding
values of the one-dimensional nongauged Q-ball, as
follows from Eqs. (73)–(76) and (A9)–(A11).
When ω̃ tends to its maximal value ω̃tk, the symmetric

soliton system goes into the thick-wall regime. In this regime,
the soliton system is spread out over one-dimensional space,
while the amplitudes of the scalar fields ϕ and χ tend to

zero as ðω̃tk − ω̃Þ1=2 in accordancewith Sec. IV. It was found
numerically that in the thick-wall regime Ẽ,Qχ , andQϕ also
tend to zero as ðω̃tk − ω̃Þ1=2, whereas the effective spatial size
L diverges as ðω̃tk − ω̃Þ−1=2:

Ẽ ∼ bω̃tkðω̃tk − ω̃Þ12; ð77Þ

Qχ ∼ bðω̃tk − ω̃Þ12; ð78Þ

Qϕ ∼ −b
q
e
ðω̃tk − ω̃Þ12; ð79Þ

L ∼ cðω̃tk − ω̃Þ−1=2: ð80Þ

From Eqs. (77)–(80) and (A5)–(A7), it follows that the
behavior of E, Qχ , Qϕ, and L is similar to that of the
corresponding values of the one-dimensional nongauged
Q-ball in the thick-wall regime.
Figure 3 shows the dependence of the dimensionless

energy Ẽ of the symmetric soliton system on the Noether
charge Qχ . We see that the dependence ẼðQχÞ is an
increasing convex ðdẼ=dQχ > 0; d2Ẽ=dQ2

χ < 0Þ function
outgoing from the coordinate origin. It follows that the
symmetric soliton system is stable against decay into
several smaller ones. We also see that, in accordance with
Sec. IV, the curve ẼðQχÞ lies below the straight line Ẽ ¼
ω̃tkQχ for all positive Qχ . From this, it follows that the
symmetric soliton system is stable against decay into
massive scalar ϕ and χ bosons.
In Fig. 4, we can see the dependence of the energy

difference ΔẼ ¼ Ẽs − Ẽa between the symmetric and non-
symmetric soliton solutions on the Noether charge Qχ .
From Fig. 4, it follows that the energy of the symmetric

5 10 15
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40

FIG. 3. The dependence of the dimensionless energy Ẽ ¼
m−1

ϕ E of the symmetric soliton system on the Noether charge
Qχ (solid curve). The dash-dotted line is the straight line
Ẽ ¼ ω̃tkQχ ¼ ð1þmχ=mϕÞQχ .
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soliton system slightly exceeds the energy of the non-
symmetric one in the whole range of the Noether chargeQχ

for which the existence of the nonsymmetric soliton system
is possible. It follows that the nonsymmetric soliton system
is more preferable from the viewpoint of energy as
compared to the symmetric one. Note, however, that the
difference ΔẼ is rather small and is of the order of 0.1% of
the soliton system’s energy. Just as the symmetric soliton
system, the nonsymmetric one is stable against decay into
massive scalar bosons. Note, however, that the symmetric
soliton system may transition into the nonsymmetric one
through quantum tunneling.
Figure 5 presents the nonsymmetric soliton solution cor-

responding to the dimensionless phase frequency ω̃ ¼ 1.5,
whereas Fig. 6 presents the energy and electric charge
densities and the electric field strength corresponding to
Fig. 5. The nonsymmetric character of the soliton system is

obvious from Figs. 5 and 6. The most interesting feature of
the nonsymmetric soliton system is the presence of the
unidirectional electric field in its interior, as for a plane
capacitor. FromFig. 5, it follows that the charged scalarϕ and
χ particles can acquire the energy equal to−eΔa0 ≈ 0.32mϕ

in the electric field of the nonsymmetric soliton system. Note
that this energy is comparable with the scalar particles’
masses. Lighter particles (e.g., light charged fermions)
passing through the interior of the nonsymmetric soliton
system can be accelerated to relativistic velocities and
energies.
Similar to Figs. 5 and 6, Figs. 7 and 8 give information

about the symmetric soliton solution. From Fig. 8, it
follows that the energy and electric charge densities are
symmetric with respect to the center of the soliton system,

10 12 14 16
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0.08

FIG. 4. The dependence of the energy differenceΔẼ ¼ Ẽs − Ẽa
between the symmetric and nonsymmetric soliton solutions on
the Noether charge Qχ .
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FIG. 5. The nonsymmetric numerical solution for fðx̃Þ (solid
curve), sðx̃Þ (dashed curve), and ẽa0ðx̃Þ (dotted curve). The
dimensionless phase frequency ω̃ ¼ 1.5.
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FIG. 6. The dimensionless versions of the energy density Ẽ ¼
m−2

ϕ E (solid curve), the scaled electric charge density ẽ−1j̃0 ¼
ẽ−1m−2

ϕ j0 (dashed curve), and the scaled electric field strength

ẽ−1Ẽx ¼ ẽ−1m−1
ϕ Ex (dotted curve), corresponding to the non-

symmetric solution in Fig. 5.
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FIG. 7. The symmetric numerical solution for fðx̃Þ (solid
curve), sðx̃Þ (dashed curve), and ẽa0ðx̃Þ (dotted curve). The
dimensionless phase frequency ω̃ ¼ 1.5.
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while the electric field strength is antisymmetric. For
positive ω, it is directed from the soliton system’s center,
so it attracts negatively charged particles and repels
positively charged ones. For negative ω, it is directed to
the soliton system’s center, so the roles of negatively and
positively charged particles are interchanged. For positive
(negative) ω, the form of the electromagnetic potential a0
corresponds to a potential well for negatively (positively)
charged particles. It follows that bound fermionic and
bosonic states can exist in the electric field of the symmetric
soliton system.

VI. CONCLUSION

In the present paper, the one-dimensional nontopological
soliton system consisting of two self-interacting complex
scalar fields has been investigated. The scalar fields interact
with each other through the Abelian gauge field and the
quartic scalar interaction. The finiteness of the energy of the
one-dimensional soliton system leads to its electric neutral-
ity, so its two scalar components have opposite electric
charges. The neutrality of the Abelian gauge field leads to
the separate conservation of the electric charges of these
scalar components. The interplay between the attractive
electromagnetic interaction and the repulsive quartic inter-
action leads to the existence of symmetric and nonsym-
metric soliton systems.
The symmetric soliton system exists in the whole

allowable interval of the phase frequency ω. When ω tends
to its minimal (maximal) value, the symmetric soliton
system goes into the thin-wall (thick-wall) regime. In the
thin-wall regime, the energy, the Noether charges, and the
spatial size of the symmetric soliton system tend to infinity.
In the thick-wall regime, the spatial size of the symmetric
soliton system also tends to infinity, but the energy and the

Noether charges tend to zero. In contrast to this, the
nonsymmetric soliton system exists only in some interior
subinterval between the minimal and maximal allowable
phase frequencies ωtn and ωtk. It follows that there exists an
interval of the Noether charge Qχ (and, consequently, an
interval of the Noether charge Qϕ ¼ −qe−1Qχ), where the
symmetric and nonsymmetric soliton systems coexist. In all
of this interval, the energy of the nonsymmetric soliton
system turns out to be less than that of the symmetric
soliton system, so the symmetric soliton system can turn
into the nonsymmetric one through quantum tunneling.
Both symmetric and nonsymmetric soliton systems are
stable against decay into massive scalar ϕ and χ bosons.
Despite the fact that the soliton system is electrically

neutral, it nevertheless possesses a nonzero electric field in
its interior. Note that the electric fields of the symmetric
and nonsymmetric soliton systems are essentially different.
The electric field of the nonsymmetric soliton system is
unidirectional in its interior, like the electric field of a plane
capacitor. It can accelerate light particles up to relativistic
velocities and energies. In contrast, the electric field of the
symmetric soliton system corresponds to the electromag-
netic potential of a potential well. In such an electric field,
the existence of bound bosonic and fermionic states is
possible.
It is known [1,16] that the field configuration of a

nontopological soliton composed only of scalar fields
can be described in terms of a mechanical analogy. For
the one-dimensional case, it corresponds to the motion of a
particle with the unit mass in the time x in the conservative
force field of a certain potential. The dimension of space in
which the particle moves is equal to the number of scalar
fields constituting the nontopological soliton. Using this
analogy, one can easily explain the behavior of the pure
scalar nontopological soliton in both the thin-wall and the
thick-wall regimes. One can also determine whether a
soliton solution exists for a given set of the model’s
parameters. At the same time, the system of differential
equations (34)–(36) describing the soliton system of the
present paper has no interpretation in terms of any
mechanical analogy. For this reason, the existence of the
soliton system should be established numerically for any
given set of the model’s parameters.
Finally, let us stress the specific character of the (1þ 1)-

dimensional electromagnetic field. Its characteristic feature
is the absence of nondiagonal terms of the electromagnetic
stress-energy tensor. This is because the magnetic field
does not exist in (1þ 1) dimensions, so the Poynting vector
vanishes there. Therefore, the (1þ 1)-dimensional electro-
magnetic field cannot transfer any energy or momentum.
Instead, the scalar fields’ kinetic energy can transform to
the one-dimensional electric field’s energy, which, in turn,
can transform back to the scalar fields’ energy. Note also
that in (1þ 1) dimensions, the potential energy of two
oppositely charged particles is proportional to the distance
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FIG. 8. The dimensionless versions of the energy density Ẽ ¼
m−2

ϕ E (solid curve), the scaled electric charge density ẽ−1j̃0 ¼
ẽ−1m−2

ϕ j0 (dashed curve), and the scaled electric field strength

ẽ−1Ẽx ¼ ẽ−1m−1
ϕ Ex (dotted curve), corresponding to the sym-

metric solution in Fig. 7.
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between them, so the electromagnetic interaction has
confining character. Thus, we can conclude that the
(1þ 1)-dimensional electromagnetic interaction is similar
to an elastic string. The only difference is that there is no
energy nor momentum transfer in the one-dimensional
electric field, whereas in the elastic string, waves can
transfer energy and momentum. The behavior of the
(1þ 1)-dimensional electromagnetic field is completely
determined by Gauss’s law, which is not a dynamic field
equation but is the condition imposed on an initial field
configuration. Indeed, in the adopted gauge Ax ¼ 0,
Gauss’s law does not contain time derivatives of the
electromagnetic potential A0. In this connection, it can
be said that the (1þ 1)-dimensional electromagnetic field
is not a dynamic one.
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APPENDIX: THE ONE-DIMENSIONAL
NONGAUGED Q-BALL

Here, we collect formulas concerning the one-
dimensional nongauged Q-ball in the model of a self-
interacting complex scalar field with the six-order self-
interaction potential VðjϕjÞ ¼m2jϕj2−gjϕj4=2þhjϕj6=3.
The analytical Q-ball solution exists only in the (1þ 1)
dimensions [1], where it can be written as
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In Eq. (A1), the squared phase frequency ω2 ∈ ðω2
tn; m2Þ,
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The Noether charge and the energy of the one-dimensional
Q-ball can be expressed in a rather compact form:
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Let us present the expressions of the Noether charge Q
and the energy E in two extreme regimes. In the thick-wall
regime, the squared phase frequency tends to its maxmum
value: ω2 → m2. Using Eqs. (A3) and (A4), we obtain the
expressions of the soliton’s Noether charge and energy in
the thick-wall regime,
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where the variable δ ¼ m − jωj. Furthermore, Eq. (A1) leads
to the soliton’s width at half-height in the thick-wall regime:
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Using Eqs. (A5) and (A6), we obtain the dependence of E
on Q in the thick-wall regime:
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From Eqs. (A5)—(A7), it follows that in the thick-wall
regime the soliton’sNoether charge and energy vanish as
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whereas the soliton’s effective size diverges as 1=
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In the thin-wall regime, the squared phase frequency
tends to its minimum value: ω2 → ω2

tn. In this regime, the
Noether charge, the energy, and the width at half-height of
the one-dimensional Q-ball behave as
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where the variable δ̄ ¼ jωj − ωtn. From Eqs. (A9) and
(A10), we obtain the dependence of E onQ in the thin-wall
regime:
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From Eqs. (A9)–(A11), it follows that the Noether charge,
the energy, and the effective size of the one-dimensional
Q-ball logarithmically diverge in the thin-wall regime.
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