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Abstract. The introduction of hydrogen into titanium VT1-0 by the methods of plasma-

immersion ion implantation (PIII) from the hydrogen plasma of a source with a heated cathode 

and into high-frequency discharge (HFD) plasma was studied. Modes of installations for 

introduction are chosen proceeding from the requirement of the maximum content of hydrogen 

in the samples. It is established that saturation from the HFD-plasma leads to a significant 

enrichment to a depth of 1.2 μm, at the introduction of hydrogen by the PIII this depth is 0.6 μm. 

The hydrogen content of 0.06 wt.% in the samples after saturation in the HFD plasma, and 0.049 

wt.% after PIII. During PIIII (with an energy of 0.9-1.5 keV), hydrogen is strongly scattered by 

the surface of the sample and is captured predominantly by surface defects (including those 

created by the ions themselves), as well as by vacancies in the near-surface layers. Upon 

saturation from the HFD-plasma, hydrogen diffuses into the interior of the sample and settles in 

interstices and at grain boundaries. At the same time, saturation from the HFD plasma and PIII 

lead to significant change in the crystal parameters and the creation of hydride phases. 

1.  Introduction 

Titanium and its alloys are widely used as structural materials in various industries [1-4]. The penetration 

and accumulation of hydrogen in titanium products lead to a change in their physic-chemical and 

operational properties and, ultimately, hydrogen embrittlement and destruction [5]. The shape and 

intensity of such changes depend on the state of hydrogen in the material [6]. Hydrogen in titanium can 

be in the form of hydrides or in a dissolved state [7, 8]. Determination of the amount, distribution and 

state of accumulated hydrogen under various treatment methods is necessary for the development of 

methods for preventing hydrogen embrittlement. 

In the literature, there are many works [9-16] devoted to the study of hydrogen accumulation and 

storage in titanium alloys during hydrogenation from the gas (hydrogen) condition and from electrolytes. 

At the same time, there are few papers devoted to the introduction of hydrogen into titanium from 

plasma. In the present work, hydrogen introduced from the hydrogen plasma of a high-frequency 

discharge [17] and from gas discharge plasma based on a plasma source with a heated cathode [18] in 

the device [19]. 

Thus, the aim of this work was to study the mechanisms of hydrogen storage in titanium by irradiating 

high-intensity pulsed-periodic beams of low-energy hydrogen ions from a gas-discharge plasma and 

saturation from high-frequency discharge hydrogen plasma. 
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2.  Materials and methods of research 
For the study, samples of titanium VT1-0 with sizes 20×20×1 mm were prepared. The surface of 

titanium samples prior to irradiation with hydrogen were mechanically polished in order to remove 

surface oxide films. 

Hydrogen concentrations measured with a hydrogen analyzer RHEN602 of LECO corporation. The 

hydrogen distribution profiles obtained with a glow-charge plasma spectrometer of the Horiba GD-

Profiler 2. The phase composition and structural parameters of the samples studied on a XRD-7000S 

diffractometer using the X-ray radiation line CuKα. The obtained spectra of X-ray diffraction processed 

with using the software POWDER CELL 2.4. 

The thermo-stimulated spectra of gas egress (TSGE) from the samples obtained at a vacuum 

assembly for the study of thermo- and radiation-stimulated gas outlet [20]. The linear heating rate was 

1 degree per second. The activation energy (Ea) of the H2 yield was calculated in accordance with [21] 

Hydrogen accumulation in titanium during irradiation with powerful pulses of hydrogen plasma 

carried out at the installation with the apparatus scheme, which presented in [19]. The method based on 

extraction of ions from the free plasma boundary, their acceleration in a high-voltage charge-separation 

layer and the formation of a beam with a high current density by ballistic focusing of ions. 

Saturation from HFD-plasma carried out at the apparatus described in [17]; the sample is not earthed 

and is not bias, that is, it is "suspended". 

Table 1 shows the most effective parameters for the introduction of hydrogen by the PIII method (in 

bold italics) and saturation from the HFD plasma. The most effective saturation mode from the HFD- 

plasma selected in preliminary experiments earlier (shown in the last line). 

Тhe designations of iPIII from table 1 will be used in the text below. 

3.  Results and discussion 

3.1. Concentration of hydrogen after PIII and HFD-plasma 

The results of measuring the hydrogen concentration are shown in table 2. It can be seen from the table 

that the hydrogen concentration in the samples after saturation in the HFD plasma is greater than after 

the PIII. 

These differences are apparently because the accelerated hydrogen ions are strongly scatters on 

surface of sample. If sample immersed in the HFD plasma, the ions and hydrogen atoms are easily 

captured by surface defects and diffuse into the sample volume under action of concentration gradient 

and temperature. 

 

Table 1.  Modes of introduction of hydrogen by the method of PIII and from HFD-plasma. 

Modes PIII 

 

Sample 

Irradiatio

n time, 

min 

Current 

density in 

the pulse, 

А/сm2 

Pulse 

frequency, 

imp/s 

Bias on  

the sample,  

V 

Pulse 

duration, 

µs 

Tempe

rature,

°С 

Dose, 

ion/ cm2 

TiPIII0 60 0.3 105   1200 4 800 2.7·1021 

Ti1PIII 60 0.11 10
5   900 3 360 7.4·10

20 

Ti2PIII 60 0.17 105   900 3 390 1.1·1021 

TiP3III 20 0.11 105   900 3 380 2.5·1020  

Ti4PIII 50 0.17 105   900 3 390 9.6·1020 

From the HFD plasma 

Sample Saturation time, min. Temperature, °С Pressure, Torr 

TiHFD 95 400 10-1 
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Table 2. Results of hydrogen concentration in the titanium alloy VT1-0. 

Sample Ti Concentration, ppm 

Tiinitial 74.7 

Ti1PIII 502.5 

Ti2PIII 236.9 

TiHFD 603.2 

3.2. X-ray studies 

The results of the X-ray analysis of the samples after PIII and HFD plasma shown in table 3 and in 

figure 1. 

 

a) 

 

b) 

 

c) 

Figure 1. X-ray diffraction patterns of titanium 

samples: a) initial, b) after 1PIII; c) after HFD 

plasma. 

Table 3. Results of XRDA after PIII and HFD plasma. 

Sample Detected phases Content of phases, vol.% Lattice parameters, Ǻ  

Original Ti_hexagonal 100 a = 2.941; c = 4.668 

TiPIII1 Ti_hexagonal 100 a=2.9526; c=4.6843 

TiPIII2 Ti_hexagonal 100 a=2.9515; c=4.6840 

TiHFD Ti_hexagonal 100 a=2.9510; c=4.6841 
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As can be seen from the table 3, the detected phases, the volume content of the phases and the lattice 

parameters are the same for all samples. At the same time, the lattice parameters with embedded 

hydrogen are noticeably larger than for the original sample. This indicates the penetration of hydrogen 

into the lattice of grain crystallites. Figure 1 shows that all α -Ti phases are observed on all titanium 

samples, and narrow and high diffraction peaks are due to the fact that the material is well crystallized. 

3.3. The layer-by- layer the elements distribution 

Figure 2 shows the distribution profiles of the elements in the samples of the titanium alloy VT1-0 before 

and after PIII and saturation from the HFD plasma (see designations of modes in table 1). It can be seen 

that on the initial sample, the high hydrogen content is at the depths of 0.05-0.25 µm with a decrease to 

0.4 µm (figure 2a). On a TiPIIII sample, a high hydrogen content is found at depths of 0.05-0.25 µm with 

a decay greater than 0.6 µm (figure 2b). And on a sample of TiPIIII2, the concentration of high contents 

is at depths of 0.05-0.3 µm with a decay greater than 0.8 µm (figure 2c). 

Thus, saturation from the HFD plasma leads to a significant enrichment to a depth of 1.2 µm, with 

the introduction of hydrogen by the PIII method, this depth is 0.6 µm. 

a) b) c) 

Figure 2. The layer-by-layer distribution of the elements after 1PIII and HFD plasma: 

a) the initial; b) after 1PIII, c) after HFD plasma. 

3.4. Temperature spectra of gas evolution from samples after PIII and HFD plasma 

Figure 3 shows the TSGE spectra of hydrogen H2 and other hydrogen-containing molecules from 

samples of the titanium alloy VT1-0 after 1PIII and after saturation in the HFD plasma; and in table 4 

the results of integrating these spectra are compared with the measured hydrogen concentrations in the 

samples. It can be seen that the composition of gases, leaving the samples, is the same, but their 

quantitative content varies greatly. In particular, the high yield of OH at saturation from the HFD plasma 

compared with PIII. The opposite, with respect to OH, the ratio is observed for the NH molecule. This 

fact explain by the enrichment the working atmosphere by the release of oxygen at action HFD generator 

from the quartz tube, which is the hull of the plasma reactor. Table 4 shows that, as was noted above 

from the sample of TiHFD after the HFD plasma, the integral values of the yield H (respectively, the 

concentration of hydrogen) and hydrogen-containing molecules (CH, NH, OH) are larger in comparison 

with PIII. In addition, the carbon of Ti1PIII sample is the largest in comparison with other samples. In 

addition to the TiPIIII sample, the integral values of the yield of hydrogen (H) and hydrogen-containing 

NH, OH molecules are higher. Thus, it can be said that the yields intensity of the hydrogen, carbon and 

the hydrogen-containing molecules differ significantly, this is obviously due to the gas medium in which 

saturating samples. That is, the composition of media, and especially if these media are in different 

aggregate states, can strongly influence the process of hydrogen absorption by a solid; the figure below 

confirms this. 
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a) b) 

Figure 3. Spectra of hydrogen, carbon, and other hydrogen containing molecules from samples: a) 

after PIII1, b) after HFD-plasma. 

Table 4. The results of integration of the TSGE curves, the relative yield Ii/IH (where Ii are the 

output of carbon and hydrogen-containing molecules; IH is the integral output of H2 in comparison 

with the hydrogen concentration (СН) in the samples (in ppm) obtained with RHEN602. 

Sample The value of the integral (arb. un.) and relative to H (rel. un.) outputs 

TiInitial 
Н C CH NH OH 

571 96 28 170 295 

Ii/IН - 0.17 0.049 0.297 0.626 

СН 74.7 ppm 

Ti1PIII 
Н C CH NH OH 

3932 390 110 455 627 

Ii/IН - 0.1 0.059 0.247 0.368 

СН 502.5 ppm 

TiHFD 
Н C CH NH OH 

4234 122 172 559 687 

Ii/IН - 0.03 0.072 0.233  0.262 

СН 603.2 ppm 

Figure 4 compares the TSGE H2 offsets from the samples of the penetrated hydrogen implantation 

using the PIII methods and from the HFD plasma. The arrows in the curves show the temperature at the 

maxima of the spectra, and corresponding to them, the desorption activation energy. In the temperature 

spectrum of hydrogen from the PIII sample (figure 4, curve 1) two peaks are observed, one low intense, 

corresponding to a temperature of 400°C and one higher intense at a temperature peak of 564° C. That 

corresponds to activation energy of desorption 1.9 eV and 2.4 eV. 

This indicates that in these samples, at least 2 types of hydrogen traps are formed during irradiation. 

On the curve 2, the peak corresponds to a temperature of 803°C, with a desorption activation energy of 

3.1 eV. 

Here, apparently, hydrogen is captured on volumetric interstices. The difference between the 

behavior of curve 1 and 2 is explained, apparently, by the mechanism of hydrogen penetration, which 

consists in the following. When irradiated with low-energy hydrogen ions, most of the ions dissipate on 

the surface and do not pass into the volume. The HFD plasma "surrounds" the sample surface at thermal 

energies, and hydrogen is captured by surface defects with subsequent diffusion to volume defects. 

Significant differences in the TSGE spectra are explained by the formation of various types of traps 

with significantly different parameters of irradiation and saturation from the plasma of the HFD. It is 

assumed that at 400-567 °C – hydrogen is trapped on surface defects. 



6

1234567890 ‘’“”

6th International Congress “Energy Fluxes and Radiation Effects” IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1115 (2018) 032045  doi :10.1088/1742-6596/1115/3/032045

 

Figure 4. TSGE H2 spectra from 

samples of the titanium alloy VT1-

0 saturated with the methods: 1) 

Ti1PIII, 2) from the HFD-plasma. 

4.  Conclusion 

Saturation from the HFD plasma of the titanium alloy VT1-0 leads to a significant enrichment to a depth 

of 1.2 µm; at the hydrogen introduction by the PIII this depth is 0.6 µm. The hydrogen concentration in 

the samples after saturation in the HFD plasma is larger (by 17%) compared to the hydrogen 

concentration after PIII with the saturation and penetration regimes selected for the maximum hydrogen 

content. 

Saturation from the high-frequency plasma and PIII irradiation leads to noticeable change in the 

crystalline parameters and does not lead to the creation of hydride phase. Consequently, hydrogen in the 

samples is in a dissolved state and this state deforms the lattice of crystallites. This indicates that the 

hydrogen is in the interstices, as the proton dimensions are very small. 

These regularities explained by strong backscattering of the accelerated hydrogen ions by the surface, 

and by the formation of surface defects that are "traps" of hydrogen, so that little penetration of hydrogen 

into the sample occurs. At the same time, when the sample is "suspended" in the HFD plasma, the ions 

and the hydrogen atoms are easily captured by the surface defects, diffuse into the sample volume and 

settle in interstitial sites and on the grain boundaries. 

 

References 
[1] Gurrappa I 2005 Mater. Characterization 51 131 

[2] Schutz R, Watkins H B 1998 Mater. Sci. Engineer. A 243 305 

[3] Yamada M 1996 Mater. Sci. Engineer. A 213 8 

[4] Brewer W D, Bird R K and Wallace T A 1998 Mater. Sci. Engineering A 243 299 

[5] Madina V, Azkarate I 2009 Intern. J. Hydrog. Energy 34 5976 

[6] Lunarska E, Chernyayeva O, Lisovytskiy D, et al. 2010 Mater. Sci. Engineer:C 30 181 

[7] Furuya Y, Takasaki A and Mizuno K 2007 J. Alloys and Compounds 446–447 447 

[8] Eliezer D, Tal-Gutelmacher E, Cross C E, et al. 2006 Mater. Sci. Engineer. A. 421 200 

[9] Kudiyarov V N, Leader A M, Pushilina N S, Timchenko N A 2014 Technical Physics 59 1378 

[10] Perevalova O B, Panin A V, Kretova O M and Teresov A D 2014 Bulletin of the Russian Academy 

of Sciences: Physics 78 706 

[11] Kudiyarov V N and Leader A M 2013 Fundamental research 10 3466 

[12] Hruska P, Cızek J, Knapp J, Lukac F, Melikhova O, Maskova S, Havela L and Drahokoupil J 

2017 International journal of Hydrogen Energy 42 22557 

[13] Pokhmurskii V I, Vynar V A, Vasyliv Ch B and Ratska N B 2013 Wear. 306 47 

[14] Burnyshev I N and Kalyuzhny D G 2014 Chemical physics and mesoscopy 16 250 



7

1234567890 ‘’“”

6th International Congress “Energy Fluxes and Radiation Effects” IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1115 (2018) 032045  doi :10.1088/1742-6596/1115/3/032045

[15] Burnyshev I N, Kalyuzhny D G, Lys V F and Tarasov V V 2015 Chemical physics and mesoscopy 

17 565 

[16] Cherdantsev Yu P, Chernov I P and Tyurin Yu I 2008 Methods for studying metal-hydrogen 

systems: textbook (Tomsk: TPU Publishing House) 286 p 

[17] Sypchenko V S 2016 The interaction of hydrogen with a thin film Al2O3 on nanocrystalline 

titanium. Thesis for the degree of cand. Phys.-math sciences Tomsk 122 p 

[18] Koval N N and Schanin P M. http://ipms.bscnet.ru/conferenc/krnd_sem/doc-2/Kovalj.pdf 

[19] Ryabchikov A I, Sivin D O 2012 Russian Physics Bulletin 12 76 

[20] Nikitenkov N N, Khashkhash A M, Shulepov I A, Khoruzhii V D, Tyurin Y I, Chernov, I P and 

Kudryavtseva E N 2011 Russian Journal of Non-Ferrous Metals 52 115 

[21] Woodruff D P, Delchar T A 1986 Modern techniques of surface science (Cambridge: University 

Press) 


