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Abstract

The Schwarzian derivative is invariant under SL(2, R)-transformations and, as thus, any function of 
it can be used to determine the equation of motion or the Lagrangian density of a higher derivative 
SL(2, R)-invariant 1d mechanics or the Schwarzian mechanics for short. In this note, we consider the 
simplest variant which results from setting the Schwarzian derivative to be equal to a dimensionful cou-
pling constant. It is shown that the corresponding dynamical system in general undergoes stable evolu-
tion but for one fixed point solution which is only locally stable. Conserved charges associated with the 
SL(2, R)-symmetry transformations are constructed and a Hamiltonian formulation reproducing them is 
proposed. An embedding of the Schwarzian mechanics into a larger dynamical system associated with the 
geodesics of a Brinkmann-like metric obeying the Einstein equations is constructed.
© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Recent studies of dynamical realizations of the non-relativistic conformal algebras [1,2]
revealed an interesting extension of the 1d conformal mechanics by de Alfaro, Fubini, and 
Furlan [3]. It describes a particle parametrized by the coordinates xi , i = 1, 2, 3, which moves 
along an ellipse and undergoes periods of accelerated/decelerated motion controlled by the con-
formal mode ρ(t)

ρ(t)3ρ′′(t) = g2, ρ(t)2
(
ρ(t)2x′

i (t)
)′ + ω2xi(t) = 0. (1)
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Here and in what follows a prime mark denotes the derivative with respect to the temporal vari-
able t and (g, ω) are constants. If the frequency ω characterizing the generalized oscillator is 
related to the coupling constant entering the conformal mechanics via ω = 2g, the dynamical sys-
tem exhibits the conformal Galilei symmetry [1,2]. The corresponding Lie algebra involves time 
translation, special conformal transformation, dilatation, which form the so(2, 1) ∼ sl(2, R) sub-
algebra, as well as spatial translations and rotations, Galilei boosts, and accelerations. Conserved 
charges associated with the so(2, 1)-transformations allow one to solve the leftmost equation 
by purely algebraic means, while the integrals of motion linked to the spatial symmetries pro-
duce the general solution for the rightmost equation (see [2] for more details). Very recently, 
dynamical systems similar to (1) were embedded into the geodesic equations of a Brinkmann-
like metric revealing an interesting link to the Ermakov equation and paving the way for possible 
cosmological applications [2,4].

It is natural to wonder whether other dynamical systems exhibiting the so(2, 1) ∼ sl(2, R)

symmetry can be constructed along similar lines. The goal of this note is to study a variant in 
which the conventional 1d conformal mechanics [3] is replaced by the third order equation

ρ′′′(t)
ρ′(t)

− 3

2

(
ρ′′(t)
ρ′(t)

)2

= −2g2, (2)

where g is a constant. The left hand side of (2) coincides with the Schwarzian derivative [5]
which is known to be SL(2, R)-invariant (for a brief review containing interesting historical facts 
see [6]). Extra degrees of freedom xi(t) analogous to those in (1) are then introduced following 
the geometric approach developed in [2,4]. They describe a damped oscillator for which the 
time-dependent frequency and friction are controlled by the Schwarzian mode ρ(t).

As the Schwarzian derivative is SL(2, R)-invariant, any function of it can be used to deter-
mine the equation of motion or the Lagrangian density of a higher derivative SL(2, R)-invariant 
1d mechanics or the Schwarzian mechanics for short. A variant in which the Lagrangian density 
is identified with the Schwarzian derivative of a specific function was recently used in describ-
ing the 1d quantum mechanics that arises as the low energy limit of the solvable theory which 
displays maximally chaotic behavior – the so called Sachdev–Ye–Kitaev model.1 In this paper, 
the derivative defines the equation of motion rather than the Lagrangian density so the dynamical 
content is different.

The work is organized as follows. In the next section we analyze the classical dynamics of 
the Schwarzian mechanics governed by the equation of motion (2). The general solution is pre-
sented and the conserved quantities associated with the SL(2, R)-symmetry transformations are 
given. It is argued that in general the model undergoes stable evolution but for one fixed point 
solution which is stable only locally. In Sect. 3 a Hamiltonian formulation is proposed which 
reproduces the integrals of motion in Sect. 2. In Sect. 4 a geometric framework is developed in 
which ρ′(t)2 plays the role of a cosmic scale factor entering a specific Brinkmann-like metric 
while the Schwarzian equation similar to (2) follows from the Einstein equations. An analogue 
of the rightmost equation in (1) is introduced by considering the geodesic equations and imple-
menting the null reduction along the direction specified by a covariantly constant null Killing 
vector field characterizing the metric. We summarize our results and discuss possible further 
developments in the concluding Sect. 5.

1 The literature on the subject is rather extensive. For an introduction to the Schwarzian quantum mechanics and 
references to the original literature see [7,8].
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2. Schwarzian mechanics

A remarkable property of the Schwarzian derivative

S(ρ(t)) = ρ′′′(t)
ρ′(t)

− 3

2

(
ρ′′(t)
ρ′(t)

)2

, (3)

where ρ(t) is a real function, is that it holds invariant under the SL(2, R)-transformations

ρ̃(t) = aρ(t) + b

cρ(t) + d
, ad − cb = 1, ⇒ S(ρ̃(t)) = S(ρ(t)). (4)

Identifying ρ(t) with a degree of freedom of a dynamical system in one dimension, one ob-
tains from (4) the infinitesimal form of the spatial translation, dilatation and special conformal 
transformation

ρ̃(t) = ρ(t) + α, ρ̃(t) = ρ(t) + βρ(t), ρ̃(t) = ρ(t) + γρ2(t). (5)

Note that, since the SL(2, R)-matrices A and −A result in the same transformation (4), the actual 
symmetry is SL(2, R)/Z2.

Before proceeding further, it is worth comparing the realization of SL(2, R) in (5) with the 
way in which the group acts upon the 1d conformal mechanics determined by the leftmost equa-
tion in (1)

t̃ = t + α + βt + γ t2, ρ̃(t̃) = ρ(t) + 1

2
(β + 2γ t)ρ(t), (6)

where the infinitesimal parameters α, β , and γ correspond to the temporal translation, dilatation, 
and special conformal transformation [3]. Thus, in the former case SL(2, R) acts upon the form 
of the field ρ(t) only, while in the latter case it affects both the temporal variable and the form of 
the field.

As was mentioned in the Introduction, any function of the Schwarzian derivative can be used 
to determine the equation of motion for a higher derivative SL(2, R)-invariant 1d mechanics. 
The simplest variant occurs if one sets S(ρ(t)) to be equal to a coupling constant2

ρ′′′(t)
ρ′(t)

− 3

2

(
ρ′′(t)
ρ′(t)

)2

=
(

ρ′′(t)
ρ′(t)

)′
− 1

2

(
ρ′′(t)
ρ′(t)

)2

= −2g2. (7)

One can readily integrate this differential equation

ρ(t) = μ

g
tanh

(
gt − λ

g

)
+ ν, (8)

where μ, ν, and λ are constants of integration, and verify that both the velocity and acceleration 
as well as the third derivative of ρ(t) are bounded functions in the domain t ∈ (−∞, ∞). Hence 
(8) represents a stable higher derivative 1d dynamical system.

Being viewed as the first order differential equation to fix the ratio ρ
′′(t)

ρ′(t) , Eq. (7) has the fixed 
point

ρ′′(t)
ρ′(t)

= const ⇒ ρ′′(t)
ρ′(t)

= 2g ⇒ ρ(t) = 1

2g
e2g(t+t0) + ρ0, (9)

2 A positive sign on the right hand side of (7) would result either in a discontinuous solution or a solution defined for a 
finite interval of t and exhibiting the blowup phenomenon.
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where t0 and ρ0 are constants of integration. Irrespective of the sign of g chosen, ρ(t) in (9)
avoids the runaway behavior only on half of the real line parametrized by the temporal variable t . 
Thus the fixed point solution (9) is only locally stable.

Comparing the general solution (8) and the infinitesimal symmetry transformations (5), one 
concludes that the spatial translation connects two particular solutions which differ by the choice 
of ν. Similarly, the dilatation affects μ and ν. The arbitrariness in the choice of λ is linked to the 
presence of the special conformal transformation. Using natural units in which both ρ and t have 
the dimension of length, one has to assign to g−1 the dimension of length as well, such that the 
dimensions of (α, β, γ ) in (5) and (ν, μ, λ) in (8) match.

Computing the first and second derivatives of ρ(t) in (8), one can express the constants 
(ν, μ, λ) algebraically and find two integrals of motion

1

ρ′

(
−2g2 + 1

2

(
ρ′′(t)
ρ′(t)

)2
)

,
ρ′′(t)
ρ′(t)

− ρ

ρ′

(
−2g2 + 1

2

(
ρ′′(t)
ρ′(t)

)2
)

, (10)

as well as a conserved quantity which depends on time explicitly

arctanh

(
ρ′′(t)

2gρ′(t)

)
+ gt. (11)

These are a manifestation of the SL(2, R)-symmetry.
The Schwarzian mechanics (7) is also invariant under the time translation

t ′ = t + ε. (12)

As follows from (8), the solutions ρ(t) and ρ̃(t) = ρ(t + ε) differ by the choice of the initial 
condition λ. Since a third order dynamical system cannot admit more than two functionally 
independent integrals of motion, the corresponding conserved energy should be expressible in 
terms of the functions exposed in (10). In the next section we construct a Hamiltonian formulation 
which reproduces the equation of motion (7) and identify the first function in (10) with the energy 
of the system.

A natural generalization of (7), which breaks the time translation invariance, involves an ex-
ternal source function f (t)

ρ′′′(t)
ρ′(t)

− 3

2

(
ρ′′(t)
ρ′(t)

)2

= −f (t). (13)

Given f (t), solving the Schwarzian equation (13) may turn out to be problematic. The substi-
tution ρ′′(t)

ρ′(t) = y(t) turns it into the Riccati-type equation y′(t) = −f (t) + 1
2y2(t) which can be 

solved by quadrature provided one particular solution is known. In general, the stability of the 
dynamical system (13) depends on the form of f (t) chosen. For some applications it may prove 
instructive to turn the logic around and use a properly chosen function ρ(t) so as to generate f (t)

via (13) (see Sect. 4).
Concluding this section, we note that, in order for the transformation (4) to be consistent with 

the dimension of length assigned to the field ρ(t), a dimensionful parameter is to be introduced 
into the consideration. In our treatment of the Schwarzian mechanics above a suitable object 
turns out to be the coupling constant g.
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3. Hamiltonian formulation

It is not obvious how to construct a Lagrangian density reproducing the equation of motion (7). 
Yet, taking into account the link to the Riccati-type equation mentioned above, one can build 
a satisfactory (albeit unconventional) Hamiltonian formulation. Let us treat ρ ′ as a canonical 
coordinate and ρ′′ as the conjugate momentum which obey the brackets

{ρ′, ρ′} = 0, {ρ′′, ρ′′} = 0, {ρ′, ρ′′} = −{ρ′′, ρ′} = ρ′ 3. (14)

The Jacobi identities hold automatically. Let us choose the Hamiltonian in the form

H = 1

ρ′

(
−2g2 + 1

2

(
ρ′′(t)
ρ′(t)

)2
)

. (15)

Because the term quadratic in the momentum ρ′′ contains a non-trivial factor 1
ρ′(t)3 , (15) can be 

viewed as a variant of 1d Hamiltonian mechanics in a curved space. Such interpretation correlates 
with the unconventional choice of the brackets (14).

Time evolution in the phase space (ρ′, ρ′′) is described by the canonical equations

ρ′′ = {ρ′,H }, ρ′′′ = {ρ′′,H }, (16)

the first of which yields the identity ρ ′′ = ρ′′, while the second reproduces (7).
The Hamiltonian formulation above, albeit unconventional, provides a nice link to the analysis 

in the preceding section. Indeed, the first integral of motion in (10) coincides with H , while the 
remaining conserved quantities can be constructed by taking into account the relations

{ρ
′′(t)

ρ′(t)
,H } = ρ′H, {arctanh

(
ρ′′(t)

2gρ′(t)

)
,H } = −g. (17)

Note that in this formalism ρ(t) commutes with ρ′ and ρ′′ and is to be treated as a function which 
depends on time explicitly.

4. Schwarzian equation from Einstein equations and extended dynamics

As the next step, let us discuss the Schwarzian analogue of the dynamical system (1). Our 
strategy is to consider the geodesic equations associated with the Brinkmann-like metric in 5d

spacetime parametrized by the coordinates yμ = (t, v, xi), i = 1, 2, 3

ds2 = −3

2
ρ′′(t)2

xixidt2 − dtdv + ρ′(t)2
dxidxi, (18)

in which ρ′(t)2 is treated as the cosmic scale factor, and implement the null reduction along v.3

The geometry admits a covariantly constant null Killing vector field

ξμ∂μ = ∂v, (19)

which gives rise to the conserved and trace-free energy–momentum tensor

Tμν(y) = �(t, x)ξμξν, (20)

3 For more details on the Brinkmann-like metrics, their symmetries, the geodesic motion on such spacetimes and the 
null reduction see [4,9].
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where the energy density � does not depend on v but otherwise is arbitrary. Within this geo-
metric framework the Schwarzian equation (13) arises if one imposes the Einstein equations and 
specifies � = 3

2π
f (t)

Rμν = 8πTμν, ⇒ S(ρ(t)) = −f (t). (21)

The dynamical system we are interested in results from implementing the null reduction along 
v in the geodesic equations associated with the metric (18)

x′′
i (t) + 2

ρ′′(t)
ρ′(t)

x′
i (t) + 3

2

(
ρ′′(t)
ρ′(t)

)2

xi(t) = 0. (22)

It describes a damped oscillator for which the time-dependent frequency and friction are con-
trolled by the Schwarzian mode ρ(t) obeying (13).

As was mentioned above, given the source function f (t), solving the Schwarzian equation 
(13) may represent a difficult task. Even if a particular solution to (13) is known, the construction 
of a general solution to (22) may still turn out to be problematic. Let us consider the simplest 
variant which occurs at f (t) = 2g2 with ρ(t) exposed in (8). In this case (22) yields

xi(t) =
(
αi cos

(√
2gt

)
+ βi sin

(√
2gt

))
cosh2

(
gt − λ

g

)
, (23)

where αi and βi are constants of integration. Surprisingly enough, although the Schwarzian mode 
displays stable behavior, the velocity of the xi-particle may grow unbounded so the extended 
system is unstable.

Similar interrelationship between the stability of the ρ(t)-, and xi(t)-modes takes place if one 
considers the fixed point (9) which yields

xi(t) =
(
αi cos

(√
2gt

)
+ βi sin

(√
2gt

))
e−2gt (24)

where αi and βi are constants of integration. Stable evolution of ρ(t) on half of the real line 
parametrized by t causes unstable propagation of xi(t) and vice versa.

5. Conclusion

To summarize, in this work we have considered a variant of the Schwarzian mechanics which 
results from setting the Schwarzian derivative to be equal to a dimensionful coupling constant. It 
was shown that the corresponding higher derivative SL(2, R)-invariant 1d mechanics in general 
undergoes stable evolution but for one fixed point solution which is only locally stable. Con-
served charges associated with the SL(2, R)-symmetry transformations have been constructed 
and (an unconventional) Hamiltonian formulation reproducing them was proposed. An embed-
ding of the Schwarzian mechanics into a larger dynamical system associated with the geodesics 
of a Brinkmann-like metric obeying the Einstein equations was constructed thus generalizing our 
recent work [2,4].

There are several interesting issues which deserve further investigation. First of all, it is worth 
studying whether the Schwarzian mechanics (7) can be constructed along the lines in [10]. Then it 
is important to understand whether a Lagrangian formulation reproducing (7) can be constructed 
without introducing auxiliary fields. Extending our analysis in Sect. 4, it would be interesting 
to understand whether globally stable solutions to Eqs. (13) and (22) are feasible. A sensible 
strategy is to start with a stable ρ(t) which yields a reasonable energy density f (t) via (13)
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and then check whether the resulting xi(t) satisfying (22) undergoes stable evolution. One more 
interesting open problem is the construction of a supersymmetric extension of the dynamical 
system (7) and more generally (13). Finally, it would be nice to reveal a possible link to the 
Newtonian cosmology [11], the Ermakov equation and the Lewis invariant [12].
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