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Abstract
The polymerization process of dicyclopentadiene using a multicomponent catalytic system based on bis(cyclopentadienyl)titanium

dichloride and diethylaluminum chloride was studied. It was demonstrated that the application of an excess of the aluminum com-

ponent leads to the formation of stable charged complexes of blue discoloration, which initiate cationic polymerization of dicy-

clopentadiene. Unstabilized thin layers of obtained polydicyclopentadiene undergo oxidation and structuring under atmospheric

oxygen. Oxidation of polydicyclopentadiene films in air occurs slowly during several weeks and can be determined by the increase

of carbonyl and hydroxyl adsorption bands in infrared spectra. Along with oxidation, cross-linking processes occur in polymers,

which lead to a change in physical parameters of the layers, and more precisely to a decrease in the permeability of atmospheric

oxygen through the layers. Consequently, this leads to the transition of the oxidation from a kinetic mode into a diffusive mode.

Such structural changes do not occur in a polymer that was stabilized by adding an antioxidant.
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Introduction
Currently, polymerization of dicyclopentadiene and norbornene

derivatives applying various catalyst systems is of great interest

[1-7]. Dicyclopentadiene (DCPD) is a secondary product of the

ethylene and propylene production and is used as a monomer to

obtain a polymer with particular properties – polydicyclopenta-

diene (PDCPD) [8,9]. Cationic polymerization of DCPD takes

https://www.beilstein-journals.org/bjoc/about/openAccess.htm
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place with metal-halide-based catalyst systems and organome-

tallic compounds. A number of scientific reports were dedi-

cated to the investigation of DCPD polymerization based on

these systems [10,11]. One of the drawbacks of these catalyst

systems is the “excessive hardness” of the system viz. HSAB

theory leading to the formation of cross-linked structures and

gelation of the system. Substitution of chlorine atoms in the

catalyst structure with organic ligands allows reducing of the

hardness of the systems and contributes to the generation of

products having a linear structure. To realize this, the usage of a

catalyst component bearing already organic ligands in its struc-

ture – bis(cyclopentadienyl)titanium dichloride (Cp2TiCl2) is

proposed.

Polymers based on DCPD, obtained by cationic polymerization,

are characterized by certain disadvantages. They have a low

molecular weight, a fairly rigid structure of the polymer chains

due to crosslinking processes occurring during polymerization.

In addition, DCPD polymers obtained from "hard" catalytic

systems, such as TiCl4, SnCl4, etc., are easily susceptible to oxi-

dation. Catalytic systems which are less "hard" can overcome

these disadvantages to some extent.

The aim of this study is to investigate the interaction between

Cp2TiCl2 and diethylaluminum chloride (AlEt2Cl) in toluene

which results in the formation of a complex, active for the

DCPD polymerization. Additionally, optimization of the ratio

between the two compounds of the catalyst system was per-

formed using electron spectroscopy. Furthermore, the DCPD

polymerization in toluene was investigated using the optimized

catalyst system, and also the dynamics of the structural transfor-

mations occurring in thin layers of PDCPD during oxidation in

air.

Polymers obtained during the dicyclopentadiene polymeriza-

tion under these conditions are well soluble in aromatic and

chlorinated solvents, and from these solutions, smooth trans-

parent films can be produced. However, the surface of PDCPD

loses its transparency and becomes dark as a function of time

when stored in air. This is attributed to the formation of cross-

linking in the polymer structure and oxidation of unsaturated

bonds, which are excessively present in the polymer structure

[12-14].

Oxidation of thin PDCPD films in air occurs slowly and is

observable by the intensity increase of vibrational bands

deriving from carbonyl and hydroxy groups in the infrared

spectra of the polymers. More specifically, an intensity increase

of the wide band at 3400 cm−1 is observed, which is assigned to

vibrations of hydroxy groups located near various carbon atoms

in the main polymer chain. Apart from this, the intensity of the

bending vibrations of carboxyl groups at 1700 cm−1 and of

ether groups at 1030–1080 cm−1 increases as well.

Results and Discussion
Study of the complex formation between
Cp2TiCl2 and AlEt2Cl
It is known that the catalytic activity of the Cp2TiCl2/organo-

aluminum compound is determined by the molar ratio of the

components of the catalytic system [15]. The rate of transfor-

mation in the system depends both on the Al:Ti molar ratio and

on the temperature [16]. UV spectra of toluene solutions of

Cp2TiCl2 and AlEt2Cl (Figure 1) in the visible region at

ambient temperature clearly demonstrate that during the first

minute of the reaction an intermediate compound is formed,

which gradually decomposes with formation of the blue com-

plex [15,16].

Figure 1: Absorption spectra in the UV and visible spectral region:
1) bis(cyclopentadienyl)titan dichloride (n-hexane, 0.4 mmol/L);
2) diethylaluminum chloride (n-hexane, 2.5 mmol/L);
3) Cp2TiCl2·AlEt2Cl (toluene, 10 mmol/L, Ti/Al ratios is 1:1, immedi-
ately after mixing); 4) Cp2TiCl2·AlEt2Cl (toluene, 10 mmol/L, Ti/Al
ratios is 1:1, 10 minutes after mixing).

The complexation between the organoaluminum compound and

Cp2TiCl2 was further confirmed using 1H NMR spectroscopy

[17,18].

The influence of the Ti/Al ratio was previously discussed

[15,19]. Nonetheless, we studied the effect of the Ti/Al ratio on

the formation of an absorption band at 700 nm (Figure 2). From

the obtained data it follows that the absorption band at 700 nm

appears only at Ti/Al ratios above 1:1, therefore, the ratio of

Ti/Al equal to 1:1.5 was further used.
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Figure 3: 1Н NMR spectra of tricyclopentadiene (a) and the interaction product between Cp2TiCl2 and AlEt2Cl with dicyclopentadiene (b).

Figure 2: Absorption spectra in the visible spectral region:
1) Cp2TiCl2·AlEt2Cl (toluene, 10 mmol/L, Ti/Al ratios is 1:0.5);
2) Cp2TiCl2·AlEt2Cl (toluene, 10 mmol/L, Ti/Al ratios is 1:0.7);
3) Cp2TiCl2·AlEt2Cl (toluene, 10 mmol/L, Ti/Al ratios is 1:0.9);
4) Cp2TiCl2·AlEt2Cl (toluene, 10 mmol/L, Ti/Al ratios is 1:1);
5) Cp2TiCl2·AlEt2Cl (toluene, 10 mmol/L, Ti/Al ratios is 1:1.5).
All spectra correspond to time 40 minutes after mixing.

During this complex formation, generation of cyclopentadiene

(CPD) trimers, resulting from the interaction between the

cyclopentadiene ring of bis(cyclopentadienyl)titanium

dichloride and dicyclopentadiene, occurs. Figure 3 presents

the 1Н NMR spectra of the product formed in the reaction

mass during the polymerization of DCPD in hexane (DCPD

concentration of 1.5 mol/L, concentration of the catalyst system

of 2.5 mmol/L, Ti/Al ratio is 1:1.5). After removing the

polymer precipitate from solution, the remaining product is

identified as a CPD trimer. The amount of trimer formed is

small and amounts to 1–3% of the total DCPD taken per

reaction. The appearance of interaction products of DCPD

and the catalytic system generating the CPD trimer was unex-

pected. Typically, the CPD trimer is formed under more severe

conditions, for example, at high temperatures ≈180 °C, (see

Figure 3).

This was confirmed by NMR analyses of the interaction prod-

ucts between the complex of bis(cyclopentadienyl)titanium

dichloride and diethylaluminum chloride with dicyclopenta-

diene (Figure 3b). The NMR spectrum of tricyclopentadiene ob-

tained via condensation of dicyclopentadiene and cyclopenta-

diene is presented for comparison (Figure 3a).
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Figure 4: Visible spectra of a mixture of Cp2TiCl2 and AlEt2Cl as function of time.

Dialkyl derivatives of aluminum very easily alkylate Cp2TiCl2.

Alkylation can occur according to the following mechanism

(Scheme 1):

Scheme 1: Mechanism of alkylation of Cp2TiCl2.

During the interaction of the intermediate complex with cyclo-

and dicyclopentadiene, generation of metal carbene species is

possible, which can also take part in the formation of polydi-

cyclopentadiene. Already in the work of Grubbs and others [20-

23], the possibility was pointed out of the formation of simple

structures with a carbene bond via interaction of organometal-

lic transition metal complexes with organic aluminum com-

pounds. The formation of such unstable bis(cyclopenta-

dienyl)titanium dichloride complexes with a Ti=CHR fragment

is possible as well in this case. The obtained complex is polar-

ized in such a way that the metal has a positive charge, and the

carbon atom has a negative charge [23]. It is assumed that after

the formation of such complexes, they initiate the metathesis

polymerization of dicyclopentadiene.

In the UV–vis spectrum of Cp2TiCl2, two maxima are observed

at 388 and 516 nm. It is known that when a solution of AlEt2Cl

is added to a Cp2TiCl2 solution, the maxima at 388 and 516 nm

will disappear and a new band will appear in the region of

580 nm [15,16].

Mixing of toluene solutions of Cp2TiCl2 and AlEt2Cl demon-

strates also a change in the visible region at ambient tempera-

ture and with the increase of the AlEt2Cl content the band at

516 nm, characteristic for Cp2TiCl2, disappears. As a result, a

new band appears in the region of 570–610 nm, confirming the

formation of an intermediate complex between Cp2TiCl2 and

AlEt2Cl, however, this only occurs when an excessive amount

of diethylaluminum chloride is present in solution.

Hence, the band with maximum absorption in the region

of 580 nm is assigned to the intermediate complex

Cp2TiCl2·AlEt2Cl, which is formed when solutions of Cp2TiCl2

and AlEt2Cl are mixed.

The stability of the formed complex was investigated using

visible spectroscopy and the obtained spectra are depicted in

Figure 4.
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Figure 5: Thermometric curve of DCPD polymerization using the catalyst system based on Cp2TiCl2 (a) and its semi-logarithmic plot of ln C0/C vs
time (b).

Scheme 2: The structures formed as a result of the cationic polymerization of dicyclopentadiene.

A clear change as a function of time can be observed by the de-

crease of the band at 580 nm. Moreover, a shift of the absorp-

tion band towards 700 nm and a broadening can be observed.

The final visible spectrum (Figure 2, curve 5) corresponds to

[Cp2TiEt]+·[AlEtCl3]−, the blue complex. Indeed, as reported in

previously published papers [15,16], the colored blue complex

under these conditions is caused by a compound containing

Ti(III) or Ti(IV). This compound corresponds to the final

[Cp2TiEt]+·[AlEtCl3]− complex.

The presence of an isosbestic point at 656 nm indicates the

presence of only two absorbing complexes, which transfers one

into the other.

Polymerization of DCPD applying the com-
plex based on Cp2TiCl2
Polymerization of DCPD, applying the homogeneous catalytic

system consisting of Cp2TiCl2 and AlEt2Cl, was performed by

adding a fresh solution of the catalytic system to a toluene solu-

tion of the monomer. However, before adding the catalytic

complex, the monomer solution was placed in an adiabatic

mixing reactor until the temperature was stabilized. To limit the

development of the polymer chain and as a deactivator of the

catalyst system, propylene oxide was used. The polymerization

of DCPD was carried out under the following conditions: ratio

of Ti/Al 1:1.5, concentration of the complex Cp2TiCl2/AlEt2Cl

from 2 to 10 mmol/L, and concentration of DCPD 1.5 mol/L.

Figure 5 shows a typical thermometric curve for the polymeri-

zation of DCPD (Ti/Al ratio 1:1.5, concentration of Cp2TiCl2/

AlEt2Cl complex 10 mmol/L, concentration of DCPD

1.5 mol/L). Based on the assumption that the stage of chain

growth proceeds as a pseudo-first order reaction, for every ex-

periment, we calculated the observed reaction constant using

the experimental curve in semi-logarithmic coordinates

(Figure 5b) [24]. The value of the observed constant of DCPD

polymerization rate in the toluene solution applying the catalyst

system amounts to 0.011 mol−1∙s−1.

Furthermore, it is assumed that in this case, cationic polymeri-

zation of DCPD proceeds via one of the double bonds. With the

participation of the double bond from the norbornene ring of

dicyclopentadiene in the double bond reaction, as a result of the

rearrangement of the active site, structures of both exo- and

endo-polydicyclopentadiene (A and B, see Scheme 2) can be

formed [1,10].
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Scheme 4: Mechanism of ROMP dicyclopentadiene.

At the same time, with participation in the reaction of the

cyclopentene double bond, one of the options may be the for-

mation of the D units (Scheme 2) as a result of the transannular

rearrangement of the growing carbocation [1]. As it was found,

A-type units (up to 70%) dominate in the structure of polymers

formed as a result of cationic polymerization. The number of

formed B- and C-type units is about the same.

In addition, a small amount of polymer E units (5–7%) is also

formed as a result of the metathesis polymerization of dicy-

clopentadiene (see Scheme 3). It was reported [20,22,23,25,26]

that the Tebbe reagent, as shown, is a precursor of titanium

carbene, which reacts with R-olefin and a Lewis base to form

stable crystalline titanacyclobutanes. Both titanium carbene and

titanacycles are ROMP catalysts (Scheme 4).

Scheme 3: The units resulting from ROMP of dicyclopentadiene.

PDCPD polymers were obtained by precipitation in ethanol,

dried and characterized by FTIR, NMR, and GPC.

Figure 6 displays a typical infrared spectrum of PDCPD ob-

tained with the catalyst system based on Cp2TiCl2 and AlEt2Cl.

Figure 6: FTIR spectrum of PDCPD obtained in toluene with the cata-
lyst system based on Cp2TiCl2 and AlEt2Cl.

This spectrum displays specific regions, e.g., the regions from

690 to 800 cm−1 can be assigned to out-of-plane deformation

vibrations of the C–H group. The band at 1440 cm−1 points out

the presence of CH2 groups. The bands in the region of

1620 cm−1 confirm the presence of C=C groups, while the

absorption band at 2990 cm−1 demonstrates the presence of

CH–CH2 groups in the ring.

Figure 7 shows the 1H NMR spectrum of the obtained polymer,

in which the region from 0.5 to 3.5 ppm is assigned to aliphatic

protons. This region contains a wide signal corresponding to the

superposition of resonances of –СН and –СН2 groups of

cyclopentene and cyclopentane rings. The region from 5.0 to

6.3 ppm contains several wide signals corresponding to reso-
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Figure 7: 1Н NMR spectrum of PDCPD obtained with the catalytic system based on Cp2TiCl2 and AlEt2Cl.

Figure 8: GPC traces for two samples of DCPD polymers obtained at
a concentration of Cp2TiCl2/AlEt2Cl complex 2 mmol/L (curve 1) and
10 mmol/L (curve 2).

nances of protons of double bonds of the polymer chain and the

cyclopentene ring (see Scheme 2 and Scheme 3).

According to GPC, the molecular weight of the polymers was in

the range of (10–50)·103 with a molecular weight distribution of

about 2–3.

Figure 8 displays the GPC traces for two samples of DCPD

polymers obtained at a concentration of Cp2TiCl2/AlEt2Cl com-

plex 2 mmol/L (curve 1) and 10 mmol/L (curve 2). The

remaining conditions are the same: Ti/Al ratio 1:1.5, concentra-

tion of DCPD 1.5 mol/L. Mw(1) = 5.13·104, Mn(1) = 2.69·104,

PDI(1) = 1.91; Mw(2) = 1.32·104, Mn(2) = 4.84·103, PDI(2) =

2.73 of additional monomer.

Oxidizing of thin layers of PDCPD in air
Oxidation in air of olefinic bonds in a thin layer of polydicyclo-

pentadiene is a gradual process and can be observed by the

increase of intensity of the vibration band of carbonyl and

hydroxy groups in the infrared spectra of the polymers

(Figure 9). The wide band at 3400 cm−1 belongs to stretch

vibrations of hydroxy groups located at various carbon atoms in

the main polymer chain. The intensity of the deformation vibra-

tion of the carbonyl groups also increases at 1700 cm−1, while

the intensity of the deformation vibration of the double bonds

decreases at 1620 cm−1.

Figure 9: IR spectra of cationic polymerized dicyclopentadiene taken
after certain periods of time exposed to air.
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Figure 9 reveals that structural changes gradually happen during

the exposure time of polydicyclopentadiene thin layers in the air

as a result of the oxidation of double bonds. A new vibrational

band at 1410 cm−1 in the IR spectrum appears which is origi-

nating from the primary radicals which are formed alongside

the chain initiation.

The kinetics for the oxidation in air at ambient temperature of

PDCPD layers was studied applying the changes in intensity of

the double bond deformation vibrations. Figure 10 shows the

kinetic curve of the PDCPD oxidation obtained from the corre-

lation between the changes of the relative intensity of double

bond deformation vibrations and the layer exposure time in air

at ambient temperature.

Figure 10: Correlation of intensities of vibrational bands at 1620 and
700 cm−1 and layer exposure time in air at ambient temperature.

The correlation presented in Figure 10 demonstrates that the

kinetics of double bond consumption during oxidation occurs in

two stages. During the first stage, the chain (formation of pri-

mary radicals) initiates, and then the chain process of PDCPD

oxidation follows.

Various mechanisms of chain initiation are possible, e.g., the

formation of primary free radicals initiating the chain reaction

of polymer oxidation (Equation 1). More often, the chain initia-

tion step is described as a bimolecular interaction between

oxygen and a monomer unit of the polymer:

(1)

Accumulation of peroxides in the polymer layer is confirmed by

DSC analysis of films subjected to air oxidation for 700 hours

(Figure 11).

Figure 11: DSC exotherm for PDCPD subjected to air oxidation for
700 hours.

From the DSC curve (Figure 11), at 140 °C an exothermic peak

can be observed corresponding to the decomposition of perox-

ides accumulated during the oxidation of PDCPD. The peak

value of heat flux is slightly lower than that given in [27],

which is explained by the slower diffusion of oxygen into the

polymer film from air and the lower temperatures of the oxida-

tion of thin PDCPD films in this study.

In our opinion, the peak at 80 °C can correspond to the pro-

cesses of oxidation of -C=C- bonds in the polymer chain due to

adsorbed oxygen. In the DSC of unexposed film, this peak is

absent. However, the DSC of unexposed film in air atmosphere

(Figure 12) shows that the oxidation and decomposition of

peroxides formed during the oxidation of polydicyclopenta-

diene occur simultaneously.

НО–O• radicals formed during this process can react with

monomer components near them, thus, forming R• radicals and

recombine with primary R• radicals. Therefore, the theoretical

yield of radical formation in the reaction (1) ranges between 0

and 2, and can be conveniently described as the reaction given

in Scheme 5.

Impurities remaining in the polymer after its purification can

participate in the initiation of the chain oxidation. These impuri-

ties can include initiator or catalyst residues, metal impurities
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Figure 12: DSC exotherm for PDCPD subjected to unexposed film: 1)
in air atmosphere; 2) in argon.

Scheme 5: Possible radical formation in the reaction (1).

with mixed valences, in particular, those of iron and copper,

peroxy and carbonyl group-containing compounds.

Unlike the initiation, the steps of chain propagation during poly-

mers oxidation are well studied [28]. The first step of chain

propagation consists of the interaction of the free R• radical

with oxygen (Scheme 6) and occurs at an observable rate at low

temperatures.

Scheme 6: The first step of the chain propagation.

In a kinetic mode, the polymer oxidation rate is limited by the

kinetic steps of the chain process, indicating that oxygen is

quickly transferred from the gaseous phase into a polymer

(macro-diffusion) and does not limit the process rate. Other-

wise, when oxygen is slowly supplied into the sample, the

process rate is limited by the diffusion, and the oxidation takes

place in a diffusion mode. The reaction kinetics is consecutive

and hence, it is characterized by a wide range of rate constants

and can be described by the following equation:

(2)

where the first element on the right defines the oxygen diffu-

sion rate into that element, and the second element defines the

rate of its chemical reaction.

The univocal criterion of the diffusion mode is the correlation

of the oxidation rate and the sample size (layer thickness, ball or

cylinder diameter, etc.). If the sample is plate-shaped and 2l

thick and its linear size is much bigger than 2l, then the concen-

tration of oxygen in each element of the sample at time t is de-

termined by following Equation 2.

However, under stationary conditions, when the oxygen supply

rate into the sample during diffusion equals its consumption rate

in the chemical reaction, then the oxygen concentration in each

element is independent of the time, i.e.,

Hence, Equation 2 can be reorganized as:

Under boundary conditions (с = с0 as х = 0 and dc/dx = 0 as

х = l), the solution of this equation gives the oxidation rate as a

ratio to a polymer mass unit [28]:

where D is the oxygen diffusion coefficient; ρ is the polymer

density and for l → ∞ (rm)∞ → 0, while l = 0 rm = kc0, i.e., oxi-

dation transfers into a kinetic mode. In this case, the value of k

is 1.6·10−3 h−1.

Equation 2 helps to understand the appearance of the curves

of the dwell time of a layer in air at ambient temperature

(Figure 13).

According to the classical theory of oxidation of polymers, the

formation of primary radicals occurs predominantly, and only

when they are formed, further oxidation of the -C=C- bonds

occurs with the aid of the peroxide radicals formed. However,

crosslinking of polymer chains occurs along with oxidation pro-

cesses, which leads to compaction of the polymer structure and
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reduction of the mobility of the polymer chains. This adversely

affects the rate of penetration of air oxygen through the layer of

the structured polymer. As a result, physical adsorption of

oxygen and its transport through the polymer layer becomes the

slowest process, which leads to a change in shape of the kinetic

curve of the accumulation of peroxide radicals (Figure 13).

Figure 13: Dependence of intensities of adsorption bands at 1410 and
700 cm−1 and dwell time of the layer in air at ambient temperature.

The curve in Figure 13 averages the experimental points of the

oxidation process and is a result of two interpolations – a curve

in the initial part (up to about 500 hours) and a straight line for

the rest of the time interval. In fact, the transition to the diffu-

sion mode occurs much earlier, as can be clearly seen from the

semi-logarithmic curve (Figure 14).

A number of PDDCP studies [29] indicate the possibility of the

formation of a thin film of a chemically modified polymer,

which reduces its permeability to corrosive media. We assume

that in case of PDCPD oxidation, the formation of chemically

modified polymer layers also occurs, which reduce the perme-

ability of the film to oxygen.

The double bonds located on the surface of the polymer are

capable of various addition reactions (bromination, epoxidation,

oxidation) forming films of several tens or hundreds of nanome-

ters thick on the surface. However, no further penetration of

reactants into the deeper polydicyclopentadiene layers occurs

[28]. It is this effect that causes the great chemical inertness of

PDCPD in relation to aggressive media. Actually, since the

initial part of the curve is exponential, then along with the

increase of the duration of the layer oxidation, and while struc-

turing is in progress, the process gradually transfers into the

diffusion mode.

The transfer into the diffusion mode of the oxidation is shown

by a semi-logarithmic curve when its slope changes (Figure 14).

Figure 14: Semi-logarithmic kinetic curve of PDCPD oxidation in air
(thin layer on silicon) with respect to intensities of adsorption bands at
1410 and 700 cm−1.

The oxygen concentration is maximal before the polymer layer;

therefore, at a small depth of the layer, the rate of oxygen

consumption is determined by the proceeding polymer oxida-

tion reactions. However, the resulting film of oxidized cross-

linked polydicyclopentadiene prevents further penetration of

oxygen into the depth of the polymer layer (Figure 15).

At this stage in general, the oxidation process is limited by the

diffusion of oxygen in the thickness of the polymer layer. The

rate of oxygen consumption at the initial time point is influ-

enced by many factors, of which the main factors are the forma-

tion and growth of the thickness of the oxidized cross-linked

polymer layer on the film surface and the change in the rate of

oxygen diffusion through the layer due to the changing proper-

ties of the polymer film. Later on, when the layer of oxidized

cross-linked polymer is formed, the speed of the PDCPD oxida-

tion process is limited only by the rate at which oxygen enters

the polymer layer.

At the same time, the accumulation of carbonyl and hydroxy

group vibrations in the polymer does not occur immediately

when the induction period is finished (Figure 16).



Beilstein J. Org. Chem. 2019, 15, 733–745.

743

Figure 17: Infrared spectra (a) of products of cationic polymerization of DCPD, stabilized with an antioxidant, after 24 hours (curve 1) and 1030 hours
(curve 2) after synthesis (thin layer on silicon wafer) and (b) the correlation of intensity ratios of adsorption bands at 1620 and 700 cm−1 vs layer expo-
sure time in air at ambient temperature.

Figure 15: The distribution of oxygen concentration in the polymer
layer: 1 – a layer of oxidized cross-linked polymer; 2 – a layer of non-
oxidized polymer.

Figure 16: Dependence of the ratio of adsorption bands at 1700 and
700 cm−1 on the exposure time of the layer in air at ambient tempera-
ture.

It is worth to mention that its induction period coincides with

the passing of the first stage of double bond consumption in the

polymer (Figure 10).

Finally, the abovementioned structural changes did not occur in

the polymer which was stabilized by adding an antioxidant

(Agidole-1 in the amount of 0.2% by mass). The infrared spec-

trum of the thin layer of the stabilized polymer (Figure 17a)
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does not change and no consumption of double bonds in the

polymer can be detected (Figure 17b).

Conclusion
This study reports regularities of DCPD polymerization in a tol-

uene solution applying a catalytic system consisting of

Cp2TiCl2 and AlEt2Cl. It was demonstrated that the use of an

excessive amount of organoaluminum leads to the formation of

stable charged blue complexes which initiate the cationic poly-

merization of dicyclopentadiene.

Polymer thin-film coatings of PDCPD obtained via cationic po-

lymerization in air undergo oxidation and transformation. Oxi-

dation in air of unsaturated bonds in layers occurs gradually and

takes place during several weeks and comes amid with the

growth of carbonyl and hydroxy group vibration bands in the

infrared spectra. At the same time, structuring and isomeriza-

tion occur in layers generating changes in their physical proper-

ties, in particular, the decrease of layer permeability for atmos-

pheric air. In its turn, this leads to the transition of the oxida-

tion from a kinetic mode into a diffusion one.

These structural changes do not occur in a polymer stabilized by

adding an antioxidant in the studied period of time.

Experimental
Dehydrated toluene, prepared according to a well-known proce-

dure, was used as a solvent [30]. Polymerization of DCPD in

toluene was carried out in a 100 mL adiabatic mixing reactor

[31]. A thermometric method was used to study the kinetics of

the process, which was carried out in adiabatic conditions with

minor temperature change; hence, the thermometric curve is at

the same time a kinetic plot [24]. The temperature was regis-

tered during the process with a digital thermometer, consisting

of a platinum thin film resistance thermometer placed on a

ceramic substrate and placed in a stainless steel thin-wall case.

The catalyst for cationic DCPD polymerization is a complex

that is formed during the interaction of Cp2TiCl2 with AlEt2Cl.

The estimated amount of Cp2TiCl2 (Sigma-Aldrich, 99% pure)

was dissolved in toluene. AlEt2Cl was used as a solution in tol-

uene with a concentration of 0.232 g/mL. All working solutions

were obtained by diluting the stock solutions with dry solvent

until the required concentration was obtained.

DCPD (Hangzhou Uniwise International Co., Ltd., 99% pure)

was purified from stabilizers by distillation under reduced pres-

sure (≈6,6 kPa).

All operations with monomer and catalyst were carried out in a

glove box MBraun Labstar provided with an argon atmosphere.

UV–vis spectra of catalyst system solutions were registered by

a spectrophotometer Thermo Scientific Evolution 201 using a

wavelength range from 200 to 900 nm.

Infrared spectra of the polymer were registered applying an

FTIR spectrometer Simeks FT-801 in the range from 500 to

4000 cm−1. A silicon plate with a diameter of 8 mm was applied

to support the polymer film and degreased before use. Polymer

films were applied by irrigation from 2–5% solutions of

PDCPD in toluene, followed by drying at 25 °C under a

nitrogen atmosphere (Binder VDL 23 Vacuum Drying Oven),

with a gradual decrease in pressure at the end of the drying

process.

The thickness of the polymer film was controlled so that

the maximum light absorption in the wavelength range of

500–4000 cm−1 did not exceed 1.2 units of absorption (EP)

and remained in the preferred range of 0.3–1.0 EP. The

optimum thickness of the film of polydicyclopentadiene was

10 μm.

1H NMR spectra were recorded using an FT-NMR spectrome-

ter Bruker Avance III AV400 (400 MHz) with HMDS as an

internal standard. Samples with a mass of 10 mg were dis-

solved in CDCl3. Chemical shifts were determined by the

residual non-deuterated chloroform signal.

Analysis of the molecular weight of the polymers was

performed using gel-permeation chromatography on the

instrument Agilent Technologies 1260 Infinity with a refractive

index detector, GPC/SEC – styrogel column, length 300 mm,

internal diameter 7.5 mm, eluent (CHCl3) rate 1 mL/s, calibra-

tion according to the polystyrene standards known molecular

weight.

Thermal analysis was performed using a DSC 204 F1 Phoenix

(NETZSCH) at a heating rate 10 °С/min with aluminum pans

(the lid was manually drilled to ensure the access of argon).

The DSC instrument was first calibrated with an indium stan-

dard. Measurements were carried out under an inert argon (or

air) atmosphere at a flow rate of 50 mL/min. Approximately

1 mg of virgin or oxidized sample was heated from 25 °С up to

250 °С.
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