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Abstract. The irradiation of hypoeutectic silumin 383.1 with an intense pulsed electron beam 

in the melting mode and rapid crystallization of the surface layer has been performed. A 

multiphase submicron nanostructured surface layer with a thickness of up to 70 nm has been 

formed. Mechanical tests of the irradiated silumin samples in tensile experiments have been 

carried out. A significant increase in strength and plastic properties of silumin irradiated with 

an electron beam has been established. Features and patterns in the distribution of displacement 

fields in the deformation process in surface layers of the samples in realtime have been 

identified by digital image correlation method using the optical measuring system VIC-3D.  

1. Introduction 

Silumins are alloys of aluminum with silicon. Due to their low specific weight, relatively high specific 

strength, corrosion resistance, and good fluidity, silumins belong to cast alloys that are widely used in 

aircraft and shipbuilding, instrument making and construction, etc. [1]. A clear disadvantage of 

silumin is its high brittleness, conditioned upon the presence of coarse inclusions of silicon and second 

phase particles of the cast origin. A radical method of transforming the structure of silumin is high-

speed heat treatment based on the use of intense pulsed electron beams of a submillisecond duration. 

In [2–4], it has been shown that the irradiation of silumin with an intense pulsed electron beam in the 

melting mode of the surface layer with a thickness of up to 1000 μm is accompanied by formation of a 

submicro nanocrystalline multiphase structure with high tribological and mechanical properties. 

Modification of the surface layer of silumin with an intense pulsed electron beam leads to formation of 

a gradient structure, the properties of which depend on the distance to the treatment surface. This 

circumstance significantly complicates the analysis of the deformation process of such materials. 

Speckle interferometry [5], implemented in [6–8] by using a three-dimensional digital optical system 

Vic-3D, is one of the areas of the analysis of the localization of plastic deformation of a material. 

The purpose of the paper is to establish and analyze the distribution patterns of local plastic 

deformation foci under tensile conditions of flat samples of silumin 383.1 in the initial state and in the 

irradiated state with an intense pulsed electron beam. 
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2. Material and research technique 

Silumin of the brand 383.1 was used as a research material. The irradiation of silumin was carried out 

on the “SOLO” installation [9] with the following parameters: the energy of accelerated electrons was 

17 keV; the electron beam energy density was 25 J/cm2; the irradiation pulse duration 150 μs; the 

number of pulses was 3; the pulse repetition rate was 0.3 s-1. The irradiation was carried out in argon 

plasma at a residual pressure of 0.02 Pa. The elemental composition and the state of the defective 

substructure of the samples of cast silumin and silumin after electron beam irradiation have been 

studied using methods of scanning (Philips SEM 515) and transmission diffraction (JEM 2100F) 

electron microscopy [10–13]. 

The tensile test was performed on an 

“INSTRON 3386” testing machine. The 

deformation rate was constant and was equal to 2 

mm/min. The deformation distribution in surface 

layers of the sample under tension was obtained 

using the optical measuring system VIC-3D [14, 

15]. The scheme of image registration on the 

surface of samples for obtaining digital 

stereoscopic images under tension is shown in 

Figure 1. Before tests, speckle structures were 

created on the surface of samples with contrasting 

fine white and black matte aerosol paints. 

Changes in displacement fields during the 

deformation process in real time were obtained 

based on processing of digital stereoscopic 

images using the VIC-3D optical measuring 

system. These displacement fields represent 

displacement projections of local regions of the 

sample surface along the OX axis (transverse 

deformation) and along the OY axis (longitudinal 

deformation). During further processing, using 

the software of the VIC-3D system, the 

displacements were converted to relative 

deformations (εxx is along the X axis, εyy is along 

the Y axis, εxy is the shear deformation). The 

deformation pattern of the sample surface is 

obtained by combining changes in microregions. 

 

3. Research results and discussion 

3.1. Data of electron microscopic studies 

The structure of silumin 383.1 in the cast state is characterized by the presence of micropores, 

intermetallic inclusions, and micron-sized silicon (Figure 2). The presence of micropores and 

inclusions (especially lamellar shape), as a rule, contributes to a significant decrease in plastic 

properties of silumin [1].  

The irradiation of silumin with an electron beam (25 J/cm2, 150 μs, 3 pulses, 0.3 s-1) leads to 

melting of the surface layer with a thickness of up to 70 μm (Figure 2, a, the layer is indicated by the 

arrow). The subsequent rapid crystallization allows forming a submicro-nanocrystalline structure of 

rapid cellular crystallization in the surface layer, the characteristic image of which is shown in 

Figure 3. The sizes of crystallization cells vary within 250-600 nm. The cells are separated by layers 

of the second phase, formed by particles with sizes of 40-80 nm. There are two types of crystallization 

Figure 1. The scheme of image registration 

from a speckle-pattern on the lateral surface of 

the sample under tension; K1 and K2 are 

digital cameras; P is the applied load. 
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cells in the modified layer. Firstly, the cells with a lamellar structure (Figure 3, a, the cells are 

indicated by arrows). The microdiffraction analysis shows that the plates are formed by silicon and are 

separated by layers of aluminum. The transverse dimensions of the plates and interlayers are 50-70 

nm. Second, crystallization cells with a dislocation substructure, formed by an aluminum-based solid 

solution (Figure 4, a). Particles of the second phase of a round shape are revealed the volume of such 

cells (Figure 4, b). Particle sizes vary between 10-30 nm. 

 

Figure 2. The structure of silumin383.1; a is the image obtained using methods of scanning electron 

microscopy (the arrow indicates the surface layer modified with an electron beam); b is the image 

obtained using methods of transmission electron microscopy (arrows indicate the inclusion of the 

second phase of the cast origin). 

 

 

Figure 3. The structure formed in the surface layer of silumin 383.1 as a result of the irradiation with 

an intense pulsed electron beam; a is the bright field; b is the dark field; images have been obtained 

using methods of transmission electron microscopy (STEM method). 

 

Thus, the irradiation of silumin 383.1 with an intense pulsed electron beam (25 J/cm2, 150 μs, 3 

pulses, 0.3 s-1) allows forming a submicro-nanocrystalline multiphase structure in a relatively thin 

(≈70 μm) surface layer. It should be expected that such a transformation of the silumin structure will 

contribute to plasticization of the material.  
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3.2. Mechanical test data 

The results of the tensile test of the non-irradiated silumin plate are shown in Figure 5. The reduced 

deformation curve is characteristic of materials with a high level of brittleness. The functional 

dependence =f() can be divided into 3 stages. This approach is standard in the analysis of 

deformation curves [16, 17].  

 

Figure 4. The structure formed in the surface layer of silumin 383.1 as a result of the irradiation with 

an intense pulsed electron beam; on (b) the arrows indicate particles of the second phase. 

Stage I is linear and reflects the elastic nature of silumin deformation. Stage II is transitional, 

followed by a very short stage of deformation softening (stage III). Points 1 and 2 on the deformation 

curve correspond to the distribution pattern of horizontal and vertical relative deformations on the 

silumin plate surface in Figure 6 

Point 1 on the deformation curve (Figure 5, a) corresponds to deformation distribution patterns in 

horizontal (Figure 6, pattern 1XX) and in vertical (Figure 6, pattern 1YY) directions, where, in the 

central part of the sample, formation of a combined local deformation foci, consisting of two regions 

with positive and negative deformation values, is registered. 

 
Figure 5. Deformation diagrams of non-irradiated (a) and irradiated (b) silumin 383.1 with an intense 

pulsed electron beam. The digits correspond to the position of deformation structure patterns on the 

curve (Figures 6 and 7). AB is the stage of elastic deformation (stage I); BC is the transitional stage 

(stage II); CD is the stage of deformation softening (stage III) and fracture. 
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Point 2 on the deformation curve (Figure 5, a) corresponds to deformation distribution patterns, 

where, in the central part of the sample, it can be seen that a significant increase in deformation values 

has occurred in the plastic defamation foci. 

The results of tensile tests of the irradiated sample of silumin 383.1 are shown in Figure 5б, b. It is 

noteworthy that in this diagram the functional dependence =f() can be represented as a parabolic 

function [18]. There are no deformation stages on the deformation curve of the irradiated sample. The 

presented deformation curves clearly show that the irradiation leads to hardening of silumin samples, 

and the destruction is observed at higher values than on the non-irradiated samples (Figure 5). 

The analysis of distribution patterns on the irradiated samples has revealed a number of interesting 

patterns (Figure 7). Point 1 on the deformation curve (Figure 5, b) corresponds to the deformation 

distribution pattern in the vertical (Figure 7, pattern 1YY) direction, where local regions with higher 

positive deformation values (YY~0.13%) than the average deformation value on the sample 

(<>~+0.04%) have been formed in the upper right part of the sample. In the upper left part of the 

sample, symmetrically to the right part, local regions with negative values have been formed in the 

shape of layers (YY~  0.05%) (Figure 7, pattern 1YY). It is obvious that these local regions contain 

stress concentrators, which have appeared in the shape of local regions with higher deformation 

values. 

An increase in the applied external stress leads to association of local deformation regions into 

larger plastic deformation foci (Figure 7, pattern 2YY). The destruction of the sample has eventually 

taken place in regions where these plastic deformation foci have occured. 

It should also be noted that local regions of compression (XX <0) and tension (XX> 0) are observed 

in the distribution patterns of horizontal relative deformations on the surface of the irradiated sample 

(Figure 7). 

  
  

2XX 2YY 2XX 2YY 

Figure 6. Distribution patterns of horizontal 

(digits with the XX index) and vertical (digits 

with the YY index) relative deformations on the 

surface of the non-irradiated sample. Digits 1 

and 2 show in the diagram in Figure 5, a the 

corresponding deformation-stress states of the 

sample under test. 

Figure 7. Distribution patterns of horizontal 

(digits with the XX index) and vertical (digits 

with the YY index) relative deformations on the 

surface of the irradiated sample. Digits 1 and 2 

show in the diagram in Figure 5, b the 

corresponding deformation-stress state of the 

sample under test. 



AMEM 2019

IOP Conf. Series: Materials Science and Engineering 731 (2020) 012013

IOP Publishing

doi:10.1088/1757-899X/731/1/012013

6

4. Conclusion 

It has been shown that the irradiation of hypoeutectic silumin 383.1 with an intense pulsed electron 

beam in the melting mode and rapid crystallization of the surface layer leads to formation of a 

multiphase submicro-nanostructured surface layer with a thickness of up to 70 nm. Mechanical tests of 

irradiated silumin samples in tensile tests have been carried out. A significant increase in strength and 

plastic properties of silumin irradiated with an electron beam has been established. Features and 

patterns in the distribution of displacement fields in the deformation process in the surface layers of 

the samples in real time have been revealed by the digital image correlation method using the optical 

measuring system VIC-3D.  
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