УДК 159.6

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ КРАТКОСРОЧНОГО ПРОГНОЗИРОВАНИЯ ДИНАМИКИ ФЬЮЧЕРСНЫХ РЫНКОВ

В.П. Григорьев, А.В. Козловских, О.В. Ситникова

Томский политехнический университет. E-mail: oksana@lcq.tpu.ru

В работе представлена нелинейная динамическая модель краткосрочного прогнозирования цен на фьючерсном рынке, разработанная на основе методов нелинейной динамики. Приведены схемы построения точечного и интервального прогнозов.

Экономическая постановка задачи

В данной работе объектом исследования является фондовый рынок. Динамика цены на фьючерсном рынке часто носит флуктуационный характер, поэтому для описания данных процессов используют стохастические вероятностные модели, в которых исследуемый процесс есть решение системы стохастических уравнений, содержащих источник случайности.

Наиболее перспективным является метод, основанный на теории детерминированного хаоса. Здесь возникновение флуктуаций объясняется как результат неслучайных взаимодействий связанных переменных в нелинейной динамической системе. Согласно данной теории введение в модель теоретически оправданных нелинейностей может описать экономические флуктуации более успешно, чем введение случайных переменных [1].

На первом этапе моделирования необходимо определить основные факторы движения рынка. Согласно теории технического анализа, которая широко применяется для прогнозирования поведения рыночных характеристик, динамика рынка включает три основных источника информации, а именно: цену контракта, объем торгов и "открытый интерес". Объем торгов и "открытый интерес" не первостепенные, но, тем не менее, чрезвычайно важные факторы, влияющие на формирование цены. "Открытый интерес" — это количество не закрытых позиций на конец торгового дня [2]. На основе данных факторов формируется ликвидность рынка и оборот торгов.

В результате модель прогнозирования цен на фьючерсном рынке должна описывать процесс изменения трех рыночных характеристик — цены контракта, объема торгов и "открытого интереса".

Математическое обоснование и построение модели

Экспериментально поведение сложной системы определяется путем наблюдений в течение какого-то интервала времени над некоторым экономическим показателем X(t), в нашем случае — ценой. Анализ этой последовательности, на формирование которой оказывают влияние и другие переменные, позволяет определить число дифференциальных уравнений первого порядка N, необхо-

димых для моделирования динамики системы. Фрактальная размерность аттрактора d должна удовлетворять неравенству d < N. Округлив d до ближайшего целого сверху, получим величину N [3].

Для определения размерности аттрактора строим псевдофазовое пространство, используя значения временного ряда цены, взятые со сдвигом во времени. Например, фазовый портрет на плоскости может быть построен с использованием вектора:

$${X(t), X(t+T)}.$$

Идея заключается в том, что сигнал X(t+T) связан с производной сигнала X(t), и результат имеет те же свойства, что и при использовании истиной фазовой плоскости.

Далее для численной оценки корреляционной размерности используем корреляционную функцию, подсчитывающую число пар точек, расстояние между которыми меньше L [3].

$$C(L) = \lim_{N \to \infty} \{ \frac{1}{N^2} \sum_{i \neq j} Q(L - ||X_i - X_j||) \},$$

$$Q = 0$$
, если $L - ||X_i - X_j|| \ge 0$;

$$Q = 1$$
, если $L - ||X_i - X_j|| < 0$.

Сама корреляционная размерность оценивается из наклона зависимости ln[C(L)] от ln(L).

Проведенный анализ последовательности наблюдений изменения цены на различных фондовых рынках позволяет ограничиться тремя уравнениями для описания исследуемой динамической системы [3].

В качестве первой фазовой координаты выбираем $X_1(t)$ — цену контракта, в качестве второй и третьей — рыночные характеристики, которые оказывают наиболее сильное влияние на формирование цены — это $X_2(t)$ — объем торгов и $X_3(t)$ — "открытый интерес".

Поскольку исследуемые динамические процессы, в общем случае, описываются дифференциальными уравнениями турбулентного типа, то модель должна включать систему трех нелинейных дифференциальных уравнений следующего вида:

$$\begin{cases} \frac{dx_1(t)}{dt} = a_1(t) \cdot X_1(t) + a_2(t) \cdot X_1(t) \cdot X_2(t) + a_3(t) \cdot X_1(t) \cdot X_3(t) \\ \frac{dx_2(t)}{dt} = b_1(t) \cdot X_2(t) \cdot X_1(t) + b_2(t) \cdot X_2(t) + b_3(t) \cdot X_2(t) \cdot X_3(t) \\ \frac{dx_3(t)}{dt} = c_1(t) \cdot X_3(t) \cdot X_1(t) + c_2(t) \cdot X_3(t) \cdot X_2(t) + c_3(t) \cdot X_3(t), \end{cases}$$

Существующая взаимосвязь между вышеописанными экономическими показателями отражена перекрестным произведением соответствующих фазовых переменных: $X_1(t) \cdot X_2(t) - ofopom\ mopros$. Отражает взаимосвязь между ценой контракта и объемом торгов и позволяет учитывать в модели внутренние силы, управляющие движением цены.

 $X_{i}(t)\cdot X_{j}(t)$ — текущая ликвидность рынка. Позволяет отразить факт заинтересованности тем или иным контрактом с долгосрочной точки зрения; другими словами, определить, насколько серьезно участники рынка воспринимают текущий тренд. Отражает взаимосвязь между ценой контракта и "открытым интересом".

 $X_2(t) \cdot X_3(t) - взаимосвязь между объемом торгов и "открытым интересом". О количественной характеристике взаимосвязи объема и "открытого интереса" известно мало, но качественную характеристику, опираясь на экспериментальные данные, можно сформулировать следующим образом: "Увеличение объема торгов должно подтверждаться достаточным открытым интересом" [2].$

 $a_1(t)$, $a_2(t)$, $a_3(t)$, $b_1(t)$, $b_2(t)$, $b_3(t)$, $c_1(t)$, $c_2(t)$, $c_3(t)$ — неизвестные коэффициенты системы, определяющие степень влияния соответствующих показателей рынка и их взаимосвязи на поведение системы. Данные коэффициенты являются переменными на некотором достаточно большом отрезке времени, но кусочно-постоянными на небольшом исследуемом интервале — шаге прогноза. Эти коэффициенты характеризуют:

- $a_1(t)$ изменение цены на один процент в единицу времени, 1/c.
- $a_2(t)$ изменение оборота торгов на один процент в единицу времени, 1/с.
- $a_3(t)$ изменение ликвидности рынка на один процент в единицу времени, 1/с.
- $b_i(t)$ − влияние цены на изменение оборота торгов, 1/руб·с.
- $b_2(t)$ изменение объема торгов на один процент в единицу времени, 1/c.
- $b_3(t)$ влияние открытого интереса на изменение взаимосвязи: объем "открытый интерес", $1/\text{шт}\cdot c$.
- $c_i(t)$ влияние цены на изменение ликвидности рынка, 1/руб·с.
- $c_2(t)$ отражает влияние объема торгов на изменение взаимосвязи: объем "открытый интерес", 1/шт·с.
- $c_3(t)$ изменение открытого интереса на один процент в единицу времени, 1/с.

Вычисление коэффициентов производиться по всем параметрам модели в фиксированные моменты времени. В результате получается система алгебраических уравнений (2) относительно неопределенных коэффициентов. Первые производные в левых частях уравнений оцениваются при помощи кубического сплайна.

$$\begin{cases} \frac{dx_1(t_i)}{dt_i} = a_1 \cdot X_l(t_i) + a_2 \cdot X_l(t_i) \cdot X_2(t_i) + a_3 \cdot X_l(t_i) \cdot X_3(t_i) \\ \frac{dx_2(t_i)}{dt_i} = b_1 \cdot X_2(t_i) \cdot X_l(t_i) + b_2 \cdot X_2(t_i) + b_3 \cdot X_2(t_i) \cdot X_3(t_i) \\ \frac{dx_3(t_i)}{dt_i} = c_1 \cdot X_3(t_i) \cdot X_l(t_i) + c_2 \cdot X_3(t_i) \cdot X_2(t_i) + c_3 \cdot X_3(t_i) \\ \frac{dx_1(t_{i+1})}{dt_{i+1}} = a_1 \cdot X_l(t_{i+1}) + a_2 \cdot X_l(t_{i+1}) \cdot X_2(t_{i+1}) + a_3 \cdot X_l(t_{i+1}) \cdot X_3(t_{i+1}) \\ \frac{dx_2(t_{i+1})}{dt_{i+1}} = b_1 \cdot X_2(t_{i+1}) \cdot X_l(t_{i+1}) + b_2 \cdot X_2(t_{i+1}) + b_3 \cdot X_2(t_{i+1}) \cdot X_3(t_{i+1}) \\ \frac{dx_3(t_{i+1})}{dt_{i+1}} = c_1 \cdot X_3(t_{i+1}) \cdot X_l(t_{i+1}) + c_2 \cdot X_3(t_{i+1}) \cdot X_2(t_{i+1}) + c_3 \cdot X_3(t_{i+1}) \\ \frac{dx_1(t_{i+2})}{dt_{i+2}} = a_1 \cdot X_l(t_{i+2}) + a_2 \cdot X_l(t_{i+2}) \cdot X_2(t_{i+2}) + a_3 \cdot X_l(t_{i+2}) \cdot X_3(t_{i+2}) \\ \frac{dx_2(t_{i+2})}{dt_{i+2}} = b_1 \cdot X_2(t_{i+2}) \cdot X_l(t_{i+2}) + b_2 \cdot X_2(t_{i+2}) + b_3 \cdot X_2(t_{i+2}) \cdot X_3(t_{i+2}) \\ \frac{dx_3(t_{i+2})}{dt_{i+2}} = c_1 \cdot X_3(t_{i+2}) \cdot X_l(t_{i+2}) + c_2 \cdot X_3(t_{i+2}) \cdot X_2(t_{i+2}) + c_3 \cdot X_3(t_{i+2}) \end{cases}$$

Из решения данной системы находим искомые параметры, которые считаем постоянными на шаге прогноза. Подставляем a_1 , a_2 , a_3 , b_1 , b_2 , b_3 , c_1 , c_2 , c_3 в систему уравнений (1) и, решая задачу Коши для системы обыкновенных дифференциальных уравнений при начальных условиях в точке (t_{i+2}), находим вектор прогностических значений $X_p(x_1, x_2, x_3)$. В результате получаем точечный прогноз на один шаг вперед.

Следует отметить, что все процессы, характеризующиеся наличием хаоса, гиперчувствительны к точности задания параметров и начальных условий [1]. Поэтому краткосрочное прогнозирование наиболее качественно осуществляется с помощью адаптивных непрерывно подстраиваемых моделей. Это означает, что при прогнозировании с помощью модели (1) на каждом шаге осуществляется обновление коэффициентов a_1 , a_2 , a_3 , b_1 , b_2 , b_3 , c_1 , c_2 , c_3 и начальных условий с учетом развития событий.

Построение интервального прогноза

Предсказание вектора X_p одним значением называется точечным прогнозом. Для построения интервального прогноза (предсказания того, что событие осуществиться в заданном интервале значений с указанной вероятностью) необходимо, в первую очередь, проанализировать относительную ошибку прогноза, которая представляется последовательностью – $(\varepsilon_r, t = 1, ... n)$. ε_r – должны быть случайными величинами и удовлетворять нормальному закону распределения.

Анализируя временной ряд ε_i , доказываем случайность колебаний уровней ε_i , пользуясь критерием пиков. Критерием случайности ряда ε_i с 5 %

уровнем значимости является выполнение следующего неравенства [4]:

$$P > \left[\frac{2}{3}(n-2) - 1.96\sqrt{\frac{16n-29}{90}}\right],$$
 (3)

где P — число поворотных точек ряда ε_n . Квадратные скобки означают, что берется только целая часть полученного значения.

При выполнении данного критерия гипотеза о случайности колебаний ε_t принимается.

Далее предполагаем, что ε_i имеет нормальное распределение, и рассматриваем вопрос о согласованности статистического и теоретического распределений, используя критерий Пирсона [5].

Величина P характеризует вероятность согласованности теоретического и статистического распределений. При P>0,1 нормальный закон достаточно удовлетворительно воспроизводит заданное статистическое распределение. P определяется из справочных таблиц по значениям χ^2 и r [5].

$$r = l - 3,$$

$$\chi^{2} = h \sum_{i=1}^{l} \frac{(\omega_{i} - p_{i})^{2}}{p_{i}},$$
(4)

где w_i — относительные частоты, заданные статистической таблицей; p_i — вероятности, полученные по некоторому теоретическому закону распределения, в нашем случае нормальному; l — число разрядов статистической таблицы.

В результате интервальный прогноз строится по следующей схеме:

$$U_p = X_p \pm \sqrt{D_p} u_\alpha,$$

число u_{α} находят по справочным таблицам значений функции Лапласа [5] из условия

$$\Phi(u_{\alpha})=\frac{1-\alpha}{2},$$

где $(1-\alpha)$ – доверительная вероятность; X_p – предсказанное значение; D_p – дисперсия прогноза, которая определяется по временному ряду ε_i .

Проверка на адекватность и тестирование модели

В общем случае под адекватностью понимают степень соответствия модели свойствам реального объекта или явления, для описания которых она строиться.

В данной работе оценка адекватности модели проводилась по средним значениям откликов модели и системы, то есть предсказанных значений показателей и реальных. При этом проверялась гипотеза о близости среднего значения наблюдаемых переменных среднему значению реальных данных.

По результатам испытаний вычисляем значение следующей величины [5]:

$$T_n = \frac{x_p - x}{(n - I)D_{xp} + (m - I)D_x} \cdot \frac{nm(n + m - 2)}{n + m}, \quad (5)$$

где x_p — предсказанные значения; x — реальные данные; D_{xp} — дисперсия предсказанных значений цены, D_x — дисперсия реальных данных; n, m — соответствующие относительные частоты, заданные статистической таблицей [5].

Сравниваем T_n с критическим значением T_c , взятым из справочной таблицы [5]. Если неравенство $T_c > T_n$ выполняется, то гипотеза об адекватности модели принимается с заданным уровнем значимости.

Таблица. Результаты прогноза цены контракта

Истинное значение цены, \$	Прогностическое значение цены, \$	Относительная ошибка прогноза, %	Доверительный интервал для прогностической цены
171,50	170,159	0,781	[170,137; 170,181]
170,00	169,460	0,317	[169,438; 169,482]
168,80	168,328	0,279	[168,306; 168,350]
166,00	165,458	0,326	[165,436; 165,480]
163,70	163,951	0,153	[163,929; 163,973]
166,50	164,671	1,098	[164,649; 164,693]
158,40	163,351	3,215	[163,329; 163,373]
158,25	160,714	1,557	[160,692; 160,736]
155,35	160,514	3,324	[160,492; 160,536]
155,10	157,156	1,325	[157,134; 157,178]
158,20	156,237	1,240	[156,215; 156,259]
155,05	155,542	0,317	[155,520; 155,564]

Для проведения тестовых расчетов использовались исходные данные — итоги торгов с Чикагской товарно-сырьевой биржи по продажам кофе за несколько лет [6]. Результаты проведенного исследования сведены в таблице и представлены на рисунке.

Рисунок. Сравнительная диаграмма реальных и прогнозиру-

Временной ряд ε_i для нашего прогноза удовлетворяет приведенным выше критериям (3), (4) и имеет дисперсию D_p =1,2829, поэтому нетрудно определить с вероятностью P=0,95, что относительная ошибка прогноза не превысит двух процентов.

$$P(\varepsilon < 0.02) = 0.95$$

Для проверки адекватности модели по формуле (5) определяем величину T_n . Отмечаем, что неравенство $T_c > T_n$ выполняется, а это указывает на то, что модель адекватна описываемой системе с

вероятностью P=0,95. Кроме этого, адекватность модели наглядно просматривается из поведения экспериментальных и теоретических кривых на рисунке.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шустер Г. Детерминированный хаос / Пер. с англ. М.: Мир, 1988. 240 с.
- Кузнецов М.В. Технический анализ рынка ценных бумаг. Киев: Наукова думка, 1990. – 248 с.
- Мун Ф. Хаотические колебания: Вводный курс для научных работников и инженеров / Пер. с англ. — М.: Мир, 1990. — 312 с.
- Экономико-математические методы и прикладные модели / Под ред. В.В. Федосеева. — М.: ЮНИТИ, 2001. — 391 с.
- 5. Мельник М. Основы прикладной статистики. М.: Энергоатомиздат, 1990. 373 с.
- 6. http://www.chicagostockex.com/

УДК 37

О РЕГИОНАЛЬНОМ АСПЕКТЕ РАЗВИТИЯ ОТЕЧЕСТВЕННОГО БИЗНЕС-ОБРАЗОВАНИЯ (1990–1998 гг.) (НА МАТЕРИАЛАХ ЗАПАДНОЙ СИБИРИ)

О.А. Никифоров

Юргинский филиал Томского политехнического университета. г. Юрга

Проанализированы в кратком виде процессы формирования бизнес-образования в России и Западной Сибири в 1990-е годы XX века. Показана актуальность проблемы, обусловленная переходом страны от одной экономической модели к другой и принципиальным изменением условий хозяйствования. Свои рассуждения и выводы автор подкрепляет данными социологических опросов, проводившихся в это время в России. Кроме того, приводятся и данные авторского социологического исследования, позволяющие сравнить общероссийские показатели с аналогичными в одном из малых городов региона. В статье использованы данные периодической печати для освещения регионального аспекта проблемы.

Переход российского общества от командно-административной к рыночной модели экономического развития не мог пройти безболезненно. Ошибки, допущенные в ходе планирования и осуществления реформ, привели страну к глубокому социальноэкономическому кризису. Общая численность занятого населения в стране уменьшилась с 1990 по 1998 гг. почти на 12 млн чел. [24. С. 54]. Спад производства, падение инвестиционной активности, высокий уровень инфляции стимулировали рост безработицы и ухудшали социально-экономическое положение значительной части населения. Безработица имела прогрессивную динамику, как минимум до 1997 г. и в стране, и в регионе Западной Сибири [26. С. 116-117; 29]. При этом цифры не отражали полностью картины сложившейся на рынке труда. Вопервых, это объяснялось разными методиками подсчета незанятого населения, во-вторых наличием проблемы скрытой безработицы [3. С. 43; 4. С. 22; 13; 15. C. 4; 17; 25. C. 33; 27. C. 70; 29].

Вывод страны из кризиса на дорогу динамичного развития связан в современных условиях со становлением рыночного механизма хозяйствования, с предпринимательством. Россия должна пройти путь, совершенный индустриально развитыми странами мира в более короткие ограниченные сроки, опираясь на достижения современной теории и практики рынка. Это невозможно без наличия широкого слоя квалифицированных кадров, способных работать в условиях рыночной экономики. Необходима стройная и эффективная система бизнес-образования. Советская экономическая школа, базировавшаяся на основе планово-распределительной модели хозяйственного механизма неспособна удовлетворить насущные потребности современного этапа развития.

Актуальность проблемы признавалась как государственными структурами управления, так и сообществом предпринимателей. Данные Госкомстата России, а также результаты исследований, проведенных Институтом стратегического анализа по заказу Госкомитета РФ, по поддержке и развитию малого предпринимательства и Всемирного банка показали, что низкая квалификация большинства предпринимателей и работающего персонала в их фирмах – одна из основных проблем, сдерживавших рыночные преобразования в стране [12. С. 13]. Это подтвердил и опрос предпринимателей г. Юрги, проведенный автором в 1998 г. Свыше трети респондентов (36 %) отметили среди свойств, необходимых для успешного ведения коммерческой деятельности, наличие более глубоких основных