Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки: 13.06.01 Электро-и Теплотехника

Профиль: 05.09.07 Светотехника

Школа Инженерная школа новых производственных технологий

Отделение материаловедения

Научно-квалификационная работа

Тема научно-квалификационной работы				
Синтез и исследование люминофоров для «белых» светодиодов				

УДК

Аспирант

Группа	ФИО	Подпись	Дата
A6-29	Лан Тяньчунь	long	

Руководитель профиля подготовки

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Профессор	Корепанов В.И.	д.фм.н., профессор		

Руководитель отделения

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Заведующий кафедрой	Клименов В. А.	д.т.н.,		
		профессор		

Научный руководитель

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Профессор	Корепанов В.И.	д.фм.н.,		
		профессор		

Научный консультант

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Профессор	Хань Т.	д.т.н., профессор	Xatlb Tao	

Аннотация к научному докладу научно-квалификационной работы

Метод: Для синтеза люминофоров использовался высокотемпературный твердофазный метод.

Основные результаты работы:

При исследовании жёлто-красныго люминофора $YAG:Ce^{3+}/xMn^{2+}/xSi^{4+}(x=0-0.2)$ изучена относительная заселенность ионов Mn^{2+} , процессы передачи энергии между $Ce^{3+} \rightarrow Mn^{2+}$. Показано, что в процессе синтеза в результате высокотемпературных твердофазных реакций ионы Mn^{2+} в основном занимают додекаэдрическое положение Y^{3+} в решетке YAG, а некоторые из них занимают октаэдрическую позицию Al^{3+} . После легирования ионов в матрицу YAG благодаря передаче энергии от Ce^{3+} к Mn^{2+} синтезированный люминофор может эффективно возбуждаться синим светом и излучать ярко-красный свет. С использованием синтезированного люминофора создан белый светодиод с улучшенной цветовой температурой (CCT) и индексом цветопередачи (CRI).

Исследован фазовая структура и люминесцентные свойства люминофоров твердого LuAG:0.1Ce³⁺/Mn²⁺/Si⁴⁺. Люминофор LuAG: $Ce^{3+}/xMn^{2+}/xSi^{4+}(x=0-0.2)$ раствора демонстрирует существенное уширение спектра ($83 \rightarrow 115$ нм) из-за $5d \rightarrow 4f$ -перехода Ce^{3+} и ${}^{4}\Gamma_{1} \rightarrow {}^{6}\Lambda_{1}$ перехода Mn^{2+} , соответственно. Эффективность передачи энергии (η_{T} , $Ce^{3+} \rightarrow Mn^{2+}$) постепенно увеличивается с ростом содержания Mn^{2+} и ее значение достигает приблизительно 45% при х=0,2. Показано, что изменение параметров люминесценции основаны на эффекте структурной вариации, сопровождающейся заменой более крупной пары (LuAl)⁶⁺ на (MnSi)⁶⁺. Таким образом, с помощью изменения содержания Mn/Si и последующим развитием структуры люминофоров в твердом растворе люминесценция может быть изменена с зеленого на оранжево-красный. Это является важным результатом для изготовления «белых» светодиодов, применяемых в общем освещении. Установлено также, что спектры PL люминофоров LuAG:0.1Ce³⁺/Mn²⁺/Si⁴⁺ при синем возбуждении могут давать оранжево-красное излучение и тем самым улучшаая ССТ и CRI.

Исследована фазовая структура и люминесцентные свойства люминофоров на основе твердых растворов TbAG:0.1Ce³⁺/Mn²⁺/Si⁴⁺ (x=0-0.2). При возбуждении длиной волны 456 нм TbAG:Ce³⁺/Mn²⁺/Si⁴⁺ происходит перенос энергии (ET) в матрице центрами красного излучения и это может быть использовано для улучшения цветопередачи. Эффективность переноса энергии (η_T , Ce³⁺ \rightarrow Mn²⁺) постепенно увеличивается с ростом содержания Mn²⁺, и достигает приблизительно 32% при x=0,2.

Выявлено, что, изменения параметров люминесценции основаны на эффекте структурной вариации замещения пары $(MnSi)^{6+}$ более крупной парой $(TbAl)^{6+}$. Показано,

что спектры излучения люминофоров TbAG:0.1Ce³⁺/Mn²⁺/Si⁴⁺ при возбуждении синим цветом могут давать оранжево-красное излучение. тем самым улучшая ССТ и СRI. При структурных изменениях люминесценция люминофоров на основе твердых растворов может быть изменена с желтой на оранжево-красную с помощью увеличения содержания Mn/Si для применений в белых светодиодах (WLED)

Практическая значимость работы состоит в том, что полученные результаты исследований могут быть использованы для создания широкого спектра светодиодов с различными и варьируемыми параметрами (индекс цветопередачи, цветовая температура) за счет увеличения красной компоненты люминофора, обусловленной ионами марганца.

Результаты работы были опубликованы в 10 статьях в зарубежных журналах, индексированы в базе данных Scopus, Web of Science.